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Preface 

It gives us great pleasure to welcome all participants to the 16th French-German-

Polish Conference on Optimization. We hope that it will provide a platform for interchanging 

ideas, research results and experiences for an international community, actively interested in 

optimization.  

The FGP’13 is the 16
th

 in the series of French-German conferences which started in 

Oberwolfach in 1980, and since 1998 have been organized with the participation of a third 

European country. For the second time, it is now organized jointly with Poland. The 

conference takes place in Kraków, the ancient capital of Polish kings and Poland's oldest 

university town. While it is full of historical monuments and its Old Town is a well preserved 

gem of medieval and Renaissance architecture, the city is still a lively cultural center of 

contemporary Poland.  

Kraków is the seat of many scientific institutions and several universities. The oldest 

of  them, the Jagiellonian University had Nicolaus Copernicus among its students. The AGH 

University of Science and Technology is the biggest technical university in Kraków, with 16 

faculties, about 40 000 students and 4 000 staff. Established 100 years ago as an Academy of 

Mining, it developed into a center of research and education in many advanced areas of 

modern technology.  

The program of the conference includes 10 plenary lectures from various fields of 

optimization, 3 invited minisymposia and 11 contributed sessions. It is planned that a post-

conference edited volume will be published, based on selected conference materials. 

This is a good opportunity to thank all persons who helped to organize this conference. 

We are indebted to the organizers of invited sessions, to the members of the Program 

Committee and to the reviewers. The success of the conference is largely dependent on the 

support from the AGH University of Science and Technology, and the Faculty of Electrical 

Engineering, Automatics, Computer Science and Biomedical Engineering.  

We wish you a nice stay in Kraków and fruitful proceedings. 

 

On behalf of the Organizing Committee 

Ryszard Tadeusiewicz 
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Optimal Low Thrust Orbit Transfers with Eclipsing
List of authors:

John T. Betts 1

Historically there are two steps when placing a satellite in orbit. First, a launch vehicle is used
to insert the satellite in a low altitude park orbit, which is followed by an orbit transfer to the
final mission orbit. The majority of operational satellites have utilized high thrust chemical
propulsion systems to perform the orbit transfer function. A high thrust orbit transfer is char-
acterized by relatively short transfer times, e.g. approximately six hours for a geosynchronous
mission. However, high thrust propulsion systems are relatively inefficient, often inserting a
payload in the mission orbit that is less than ten percent the weight in the park orbit. The
opposite occurs when using modern low thrust propulsion systems, namely greatly improved
fuel efficiency at the expense of much longer transfer times. Solar electric propulsion systems
deliver these performance benefits, provided the vehicle is located in a region of sunlight so that
the engine can operate. When the spacecraft passes through the Earth’s shadow (eclipsing),
no thrust is generated, and the trajectory design must address this behavior. Furthermore, the
location of the shadow changes as a function of time, and since the satellite trajectory may or
may not pass through the shadow, the impact of eclipse on the trajectory design can be very
significant. Because the thrust acceleration is so small, it is important to include other small
perturbations in the dynamic model as well. Finally, the impact of any small force early in
the trajectory is greatly amplified because the duration of the transfer may take many months.
In short, an optimal low thrust transfer with eclipsing is a a very challenging computational
problem.

An approach has been developed for constructing optimal low thrust orbit transfers that ad-
dresses the impact of eclipse regions. The complete trajectory is modeled using a sequence
of burn and coast phases. An initial guess is constructed by stepping one phase at a time
using a receding horizon technique to minimize the orbit error at the end of each phase. The
initial guess and phase sequence is then modified during a number of passes that optimize the
final mass. The approach is illustrated by computing optimal transfers to geosynchronous and
Molniya mission orbits. The overall solution technique requires solving a sequence of over 400
optimal control problems for the example problems.

1Applied Mathematical Analysis, LLC
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Bregman Iterations in Image Reconstruction
List of authors:

Martin Burger 1

This talk will discuss variational methods for image reconstruction with nonsmooth regular-
izations. As an alternative to standard models minimizing the sum of data fidelity and reg-
ularization, Bregman iterations have emerged as a state-of-the art yielding superior results in
many cases. We shall discuss Bregman iterations for the highly degenerate total variation and
sparsity regularizations as well as their analysis. We discuss equivalence or non-equivalence
to Augmented Lagrangian formulations and its implications. Finally we present applications
in biomedical imaging and an extension to multichannel (color) imaging, which leads to novel
questions and further generalizations of Bregman distance concepts.

1Working Group Imaging, Institute for Computational and Applied Mathematics, University of Münster,
Einsteinstrasse 62, D-48149 Münster, Germany
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Optimal control problems for differential inclusions
List of authors:

Piermarco Cannarsa 1

The typical way to model control systems is the well-known parameterized form ẋ = f(x, u)
introduced by Pontryagin. A more general representation, however, is the one that describes a
control system as a differential inclusion. One may even prefer the latter approach for various
questions connected with compactness and existence of optimal solutions. While, by and large,
the above approaches seem to be equivalent - thanks to the well-known possibility of parame-
terizing multifunctions - the existence of smooth parameterizations of a given multifunction is
still an open problem. This talk will address typical issues that arise in dynamic programming
for nonparameterized control systems, discussing both the Mayer and the minimum time prob-
lem. As is natural to expect, our structural assumptions will be given in Hamiltonian form. A
surprising difference, with respect to the classical approach to parameterized problems, is the
role played by the maximum principle in several regularity issues.

1Dipartimento di Matematica Universitá di Roma ”Tor Vergata”, Via della Ricerca Scientifica 1 00133 Roma,
Italy
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Attractors for multivalued semiflows governed by subdifferential
inclusions

List of authors:

Piotr Kalita 1

this talk is based on joint work with Grzegorz  Lukaszewicz 2

This talk will address the asymptotic behaviour of the dissipative partial differential inclusions
with the multivalued term in the form of the Clarke subdifferential of a locally Lipschitz func-
tional. Such problems can be used as the models of contact phenomena in the mechanics of
continuous media. We present three approaches to show the existence of global attractors for
formulated problems. For each approach we will show examples of the problems to which this
approach applies. In the first approach we will formulate the problem as a multivalued semiflow
(m-semiflow) and we will show that it is continuous, compact and has a bounded absorbing
set. The most difficult of the three properties, the compactness, will be shown by the analysis
of the energy function. Moreover, we will define a discrete multivalued semiflow originating
from the Rothe method that consists in the time discretization of the continuous problem and
we will show that the discrete attractors approximate the continuous one in the sense of upper
semicontinuous convergence. The second approach will also use the theory of m-semiflows and
it will rely on the relaxation of the compactness assumption to the so called flattening condition
and the relaxation of the continuity assumption into the strong weak uppersemicontinuity of
the solution map and the weak compactness of its images. We will prove an abstract theorem
and provide examples of reaction diffusion problems with multivalued boundary conditions and
source terms that follow the presented relaxed framework. The last approach will rely of the
theory of trajectory attractors. The global attractor of multivalued semiflow will be obtained
as a section of trajectory attractor. We show that the trajectory attractor approach applies to
incompressible Navier Stokes flows with multivalued boundary conditions.

1Institute of Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, ul.
prof. S. Lojasiewicza 6, 30-348 Krakow, Poland

2Institute of Applied Mathematics and Mechanics, Mathematics Department, University of Warsaw, ul. S.
Banacha 2, 02-097 Warsaw, Poland
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NONSMOOTH OPTIMIZATION PROBLEMS IN PASSIVE
CONTROL OF CRACK PROPAGATION IN LINEAR

ELASTICITY

GÜNTER LEUGERING, JAN SOKOŁOWSKI, AND ANTONI ŻOCHOWSKI

1. Shape-topological differentiability of elastic energy in
nonsmooth domain

The body with a crack and an inclusion is considered in the framework of
linear elasticity. The associated energy functional is used for the control of
crack front propagation. The second order mixed shape-topological deriva-
tives of the functional are evaluated for the purposes of passive control of
crack front propagation. To this end the Griffith functional is minimized
with respect to the admissible family of inclusions.

The unilateral crack model in the framework of linear elasticity is con-
sidered in two and three spatial dimensions. The boundary value problem
for the elastic displacement field takes the form of a variational inequality
over the positive cone in fractional Sobolev space. The variational inequality
leads to a problem of metric projection over a polyhedric convex cone, so
the conical differentiability concept applies to the shape sensitivity analysis
of the variational inequality under considerations.

The specific shape functional associated with the crack form is the so-
called Griffith functional. The Griffith functional depends on the singular-
ities of solutions to crack boundary value problems, and it is given by the
shape derivative of elastic energy for infinitesimal deformations of the crack
front. For our purposes, the Griffith functional is defined by the distributed
shape derivative of the energy and it depends exclusively on the solution to
the unilateral elasticity boundary value problem in the cracked domain. The
sensitivity of the functional is performed for shape-topological perturbations
far from the crack by the domain decomposition technique. To this end the
conical differentiability of solutions to the variational inequality obtained for
the displacement field in the cracked domain is established. The obtained re-
sults can be used in the control of crack propagation by the optimum design
methods.

In the lecture the domain decomposition technique is employed to singular
perturbations in solid mechanics. The singular perturbations of geometrical
domains are located far one from another. The domain include a crack Γc,
so the crack shape is perturbed, the perturbation in the direction of a vector
field V is measured by the Griffith shape functional. In order to influence the
crack propagation within the elastic body Ω, the small inclusion ω defined
by the appropriate caracteristic function χε is introduced far from Γc. The
influence of the specific inclusion on the crack propagation is measured by
the shape-topological derivative of the Griffith functional with respect to the

7



2 GÜNTER LEUGERING, JAN SOKOŁOWSKI, AND ANTONI ŻOCHOWSKI

small parameter ε → 0 which governs the size of the inclusion. The model
of the solid body with the crack and inclusion is defined in the nonsmooth
domain Ω because of the crack presence, and it is subjected to the singular
domain perturbations because of the inclusion ω which reduces to a point in
the limit ε→ 0. The displacement field in the elastic body is determined in
the framework of linear elasticity from the variational inequality

uε ∈ K(χε) : a(χε;uε, v − uε) > L(χε; v − uε) ∀ ∈ K(χε) . (1)

The difficulties associated with the model are

(1) For a fixed parameter ε > 0 the dependence of solutions to the
variational inequality on the crack shape perturbations is only Lips-
chitzian, at most;

(2) The dependence of solutions to variational inequality on singular geo-
metrical domain perturbations can be only modeled in the framework
of compound asymptotic expansions;

(3) The second order shape-topological derivative of the energy func-
tional should be evaluated in the direction of two vector fields, the
first for the crack perturbations, and the second for the inclusion
perturbation;

(4) The second order differentiability of the energy functional is com-
bined with the topological sensitivity analysis in order to determine
the sensitivity of Griffith functional with respect to the location of
the inclusion.

In conlusion, the direct analysis of the model and derivation of the second
order mixed shape-topological derivative could be out of the scope of modern
mathematical theory. That is why, we are going to obtain the new, positive
results by employing the domain decomposition technique to our model.
Therefore, the domain Ω with the crack and the inclusion is decomposed
into Ω := Ωc ∪ Γ ∪ ΩR where

• Ωc contains the crack, so we are going to impose the unilateral con-
ditions on the crack in the subproblem defined in Ωc;
• ΩR contains the inclusion, so we are going to perform the asymptotic
analysis associated with the small parameter ε in the subproblem
defined in ΩR;
• two subproblems are coupled via the interface Γ with the appropriate
Steklov-Poincaré operators.

In the paper in preparation the first and the second order nonsmooth shape
sensitivity analysis is performed for the elastic energy functional in domains
with cracks. Such an analysis can be found in the monograph [7] for the
frictionless contact problem of an elastic body with the rigid foundation, the
so-called the Signorini problem in linear elasticity.

The crack is considered in the framework of linear elasticity, however the
nonlinear boundary conditions of unilateral type are prescribed on the crack
itself. This makes the solution map for crack boundary value problem non-
smooth, since the solution of the boundary value problem is only Lipschitz
continuous with respect to the data, e.g., with respect to the right-hand
side of the variational inequality given by the loading applied to the elastic

8
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Γc

Ωc

ω

ΩR

Γ

Figure 1. Domain Ω with crack and inclusion

body under considerations. However, the elastic energy functional is differ-
entiable with respect to the boundary variations including the perturbations
of the crack tip. We are interested in a specific problem of the second order
shape-topological differentiability of the elastic energy functional

• the first order differentiability, with respect to crack shape,
• then the second order differentiability of the resulting shape func-
tional with respect to boundary-topological variations far from the
crack.

As a result it is shown that the Griffith shape functional is differentiable
with respect to the domain variations far from the crack, and the derivative
is explicitely determined.

References
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Sokolowski, Jan On the analysis of boundary value problems in nonsmooth do-
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Optimal control for medical applications - challenges and solutions
List of authors:

K. Mombaur 1

Optimal control problems are ubiquitous in medical applications, in particular in the field
of motion generation. This talk serves to highlight challenges for applied mathematics, and
especially optimization and optimal control arising from this interesting area of applications
and to present potential solution approaches. The goals in this context are to better understand

human movement and  to use this understanding to improve the movement either by controlling
it directly, by developing better training and rehabilitation techniques, or by optimally designing
technical devices that support or guide the movement.

We will discuss different examples for optimal control problems in medical applications, e.g.

• the generation of optimal muscle stimulation patterns for functional electrical stimulation
in walking, in particular for the treatment of the drop foot syndrome of stroke patients

• the analysis and improvement of stability of normal and pathological gait

• the optimization-based development and control of an exoskeleton for medical applications

• the study of walking and running motions with prostheses, e.g. in the context of disability
sports: high-speed running of bipedal amputees on carbon fiber prostheses

• optimal sit to stand transfer with and without physical assistive devices.

Among the mathematical challenges arising from these applications are:

• The efficient and flexible modeling of these complex biomechanical systems, sometimes in
combinations with the respective technical devices. The mathematical descriptions of such
motions result in highly nonlinear systems of ordinary differential or differential-algebraic
equations, generally including multiple phases of motion, implicitly defined phase changes
and discontinuities of state variables between phases. These models need to be adjustable
to different subjects and situations, and the right level of complexity has to be chosen for
each application. The identification of good data for human models also present a big
issue.

• A correct formulation of optimal control problems for the generation and control of such
motions: This generally results in a hybrid multi-phase optimal control problem including
switches, continuous and discrete phases, constraints and objective functions. Avoiding
global and local redundancy of the constraints poses a particular challenge in some appli-
cations. Objective functions can get very complex as soon as stability issues are involved:

1ORB, Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany
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in this case derivatives of the trajectories have to be considered in the objective func-
tion or constraint formulations, and the variational differential equation of the hybrid
dynamics have to be included in the dynamic constraints of the problem.

• Initialization of state and control variables: due to the large number of variables an
automated initialization is favorable, and due to the local nature of of the optimization
procedures, a good initialization is very important.

• An efficient solution of optimal control problems is essential, both for offline (generation/
selection of motions) and online problems (control of motions). Direct optimal control
techniques using multiple shooting have proven very efficient for the solution of such
problems. While in the offline case, precise solutions for whole body human models can
be sought for, reduced models and real-time methods have to be used in the online case.

• An efficient solution of inverse optimal control problems: Inverse optimal control problems
are formulated to identify optimization objectives of motions from (partial) measurements
of state variables and potentially control variables. This class of problems is particularly
challenging, since it consists in solving a parameter estimation in an optimal control
problem. Bi-level as well as one-level methods have been developed to solve this type of
problems.

• Handling of uncertainties and variability in data: data in this context is recorded by optical
motion tracking systems, inertial measurement units, force plates, EMG etc. None of these
measurements is precise. In addition, there is a lot of variation between subjects, motion
trials, scenarios, .... Deciding which data can be combined for which analysis (e.g. which
motions are combined in one inverse optimal control computation with the hypothesis
that they share the same underlying objective function) is a very hard problem.

• The transfer of optimization results to reality also is an issue. Once optimal motions have
been computed for a prostheses, and exoskeleton, another physical assistive device, or a
stimulation pattern, they have to be applied to the real system, and methods for coping
with the model mismatch are required.
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No-Gap Necessary and Sufficient Second Order Conditions in Optimal
Control: Theory and Applications

List of authors:

N. Osmolovskii 1

H. Maurer 2

We observe some results contained in our monograph published by SIAM in 2012 [2]. First we
formulate no-gap necessary and sufficient second order conditions in optimal control problems
with ordinary differential equations considered on a non-fixed time interval, subject to end-
points and mixed state-control constraints. The conditions admit discontinuities of the first
kind of the reference control and take them into account. Next we formulate such conditions
for optimal control problems with a vector control variable having two components: a continu-
ous unconstrained control appearing nonlinearly in the control system and a bang-bang control
appearing linearly and belonging to a convex polyhedron. Such type of control problem arises
in many applications. Particular emphasis is given to bang-bang control problems. Bang-bang
controls induce an optimization problem with respect to the switching times of the control.
It turned out that the classical second-order sufficient condition for the Induced Optimization
Problem (IOP), together with the so-called strict bang-bang property, ensures second-order
sufficient conditions (SSC) for the bang-bang control problem. We mention a number of numer-
ical examples in different areas of application which illustrate the verification of SSC for both
regular controls and bang-bang controls.
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New Optimality Conditions and Methods for State-Constrained Elliptic
Optimal Control Problems

List of authors:

Hans Josef Pesch 1

joint work with M. Frey, S. Bechmann, and A. Rund

Based on two different reformulations of the state constraints and a hypothesis on the structure
of the active set, new necessary conditions for linear-quadratic elliptic optimal control prob-
lems with distributed controls are obtained which exhibit higher regularity of the multipliers
associated with the state constraint. Moreover, we obtain also new jump and sign condi-
tions. Measures are no longer an issue. The two investigated approaches mimic the well-known
Bryson-Denham-Dreyfus indirect adjoining method which is the preferred ansatz in solving
state constrained optimal control problems with ordinary differential equations numerically.
Mathematically the reformulations lead to a new kind of set optimal control problem, where
the active set of the state constraint, resp. the interface between the inactive and the active set
are to be determined as part of the solution. Various formulations of this type of optimization
problem as bilevel optimization problems are discussed which also include shape-optimization.
Moreover, parallels can be drawn to optimization on vector bundels. In the end, these condi-
tions can be formulated as free boundary value problems. Numerical results will demonstrate
the performance of the resulting numerical method.

1University of Bayreuth, Chair of Mathematics in Engineering Sciences
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A distance for probability spaces, and long-term values
              in MDP and Repeated Games

List of authors:

Jérôme Renault
1

joint work with Xavier Venel (Tel-Aviv University)

Given a compact subset X of a normed vector space, we study the pseudo-metric on Borel
probabilities over X given by d∗(u, v) = supf∈D1

|u(f)− v(f)|, where D1 is the set of functions
satisfying: ∀x, y ∈ X,∀a, b ≥ 0, af(x) − bf(y) ≤ ‖ax − by‖. The particular case where X
is a simplex endowed with the L1-norm is particularily interesting: in this case d∗ can be
characterized as the largest distance on the probabilities with finite support over X which
makes all disintegrations non expansive. Moreover we obtain a Kantorovich-Rubinstein type
duality formula for d∗(u, v) involving couples of measures (α, β) over X ×X such that the first
marginal of α is u and the second marginal of β is v.

In the second part of the paper, we study several kinds of Markov Decision Processes, Gambling
Houses and 2-player zero-sum Repeated Games. It includes in particular all partial observation
MDPs with finitely many states, and repeated games with an informed controller and finite sets
of states and actions. In each case, the underlying state space is compact and the transitions
can be shown to be non expansive for the distance d∗ (or in some case for the Kantorovich-
Rubinstein distance). This allows us to prove the existence of, and to characterize via the
introduction of appropriate invariant measures, a very strong notion of limit value called the
general uniform value. The decision-maker is able to play well independently of the time
horizon, and regarding evaluations for payoffs we consider not only the Cesaro means when the
number of stages is large, but any evaluation function θ over stages when the total variation,
or impatience, TV (θ) =

∑
t≥1 |θt+1 − θt| is small enough.

1MF 414, GREMAQ, TSE et Département de Maths, Manufacture des Tabacs, Université Toulouse 1 Capitole,
21 allée de Brienne, 31000 Toulouse, France
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Evaluation complexity in nonlinear optimization
List of authors:

Philippe Toint 1

(with C. Cartis and N. Gould)

The talk will attempt to cover a number of recent results in the worst-case complexity analysis
of algorithms for smooth nonlinear (and potentially non convex) optimization problems, both
constrained and unconstrained. The first part will investigate the evaluation complexity of the
standard problem and show some surprising results concerning classical methods, as well as the
remarkable properties of the ARC methods, which are based on a cubic regularization scheme.
It will also be shown that some of these results are sharp or optimal by discussing examples
where the worst-case behaviour of the considered methods is actually achieved. Building upon
the analysis for the unconstrained case, it will also be shown how to extend the analysis to
the case of convexly constrained problems first, and finally to the general problem involving
nonlinear equalites and inequalities. A discussion of some conclusions and remaining challenges
will be proposed.

1Department of Mathematics, The University of Namur (FUNDP), 61, rue de Bruxelles, B5000 - Namur,
Belgium
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Shape from Shading: Classic and Modern Methods in Computer Vision
List of authors:

M. Breuß 1

Y.C. Ju 2

Shape from shading (SFS) is a classic inverse problem from computer vision with many potential
real-world applications. Given a single input image, the task of SFS is to determine the shape
of a depicted object at hand of assumptions on lighting and light reflectance in the scene. For
an overview see [3].

Based on the underlying assumptions, the SFS methods differ a lot with respect to the mathe-
matical properties of the models. In recent years, the so-called perspective SFS models became
relatively popular, see e.g. [4]. These are useful in settings where the camera is relatively close
to photographed objects. Making use of specific combinations of modelling assumptions, one
can prove well-posedness properties of the respective models [1]. Concerning mathematical for-
mulations that arise with SFS, Hamilton-Jacobi partial differential equations (PDEs) as well as
related optimal control approaches are often employed [2]. However, in classic works as well as
for recent modeling extensions the flexibility of variational methods is appreciated.

After an introduction to the issues arising in SFS, we will consider some classic methods in the
field as well as recent optimization approaches. The goal of our presentation is to show that
computer vision is an active and interesting field of research that offers interesting applications
for applied mathematics.
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Image Reconstruction and Wasserstein Transport Models for
4D Blood Cell Transmigration

List of authors:

Christoph Brune

Martin Burger

Dietmar Vestweber

Understanding and controlling leukocyte (white blood cell) extravasation is a very important
goal for cell biology and medical treatment during inflammation (see figure below). It is related
to autoimmune or hardly curable chronic diseases e.g. arthritis, periodontitis or multiple sclero-
sis. A fundamental open question is the specific pathway leukocytes take (trans- or paracellular
migration) and their mechanical constraints leaving and entering blood vessels.

In this talk we will present recent developments for combined motion estimation and recon-
struction models for tackling time-dependent inverse problems in 4D bioimaging. In particular,
we will focus on modeling variational methods under parabolic PDEs including conservations
laws and sparsity constraints. We will address optimal Wasserstein transport for combined
tracking, denoising and deblurring of cells in motion and present achievements for the analysis
and optimization of those models. Synthetic and experimental numerical results will underline
the importance of understanding and simulating cell transmigration through barriers.

1Institute for Computational and Applied Mathematics, University of Münster, Germany
2Institute for Computational and Applied Mathematics, University of Münster, Germany
3Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
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TGV Based Image Reconstruction: Analytics
List of authors:

M. Holler 1

K. Bredies 2

In JPEG compression for digital images, data reduction is achieved by quantizing the coefficients
of a cosine transform of the original image. As a result, the source image cannot be obtained
uniquely from the compressed JPEG file and the decompressed image typically suffers from
compression artifacts. Motivated by the aim of reducing such artifacts, an optimization problem
for multichannel image reconstruction from inexact or incomplete data is considered. The task
is to minimize the sum of two convex functionals, one ensuring data fidelity and the other
one being a regularization term. Having the application to transform based image coding such
as JPEG in mind [H12a, H12b], point-wise interval restrictions on the Riesz-basis transformed
images are imposed for data fidelity. For regularization, the Total Generalized Variation (TGV)
[B10] functional of arbitrary order is used.

A formulation of the optimization problem in a general function space setting is presented.
This also allows further applications such as improved JPEG 2000 decompression and wavelet
based zooming. The results of [B11] are generalized to the TGV functional of arbitrary order
and used to obtain existence of a solution and optimality conditions. At last, based on the
primal-dual algorithm of [C11], numerical results for the desired applications are provided, in
particular showing the ability of the considered approach to obtain high quality reconstructions
even from strongly compressed JPEG files.
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[B10] K. Bredies, K. Kunisch and T. Pock Total generalized variation. SIAM J. Imag. Sci.,
2010.

[B11] K. Bredies and T. Valkonen Inverse problems with second-order total generalized variation
constraints. Proceedings of SampTA, 2011.

[C11] A. Chambolle and T. Pock A first-order primal-dual algorithm for convex problems with
applications to imaging. J. Math. Imaging Vision, 2011.

[H12a] K. Bredies and M. Holler Artifact-free decompression and zooming of JPEG compressed
images with total generalized variation. Springer, Commun. Comput. Inf. Sci., 2012.

[H12b] K. Bredies and M. Holler A Total-Variation-based JPEG decompression model. SIAM
J. Imag. Sci., 2012.

1University of Graz
2University of Graz

21



A Convex Variational Approach for Restoring Data Corrupted with
Poisson-Gaussian Noise

List of authors:

A. Jezierska 1

E. Chouzenoux1

J.-C. Pesquet1

H. Talbot1

The Poisson-Gaussian (PG) model is well suited to a number of imaging systems. The Poisson
component is often related to the quantum nature of light and accounts for photon-counting
principles in signal registration, whereas the Gaussian component is typically related to thermal
noise present in the electronic part of the imaging system. Despite constant improvements in
data acquisition devices, electronic noise cannot usually be neglected. However, up to now, PG
model had not been widely used because of theoretical and practical difficulties. Among existing
works dealing with PG noise, a number of methods have addressed image restoration problems,
but they rely on approximations of the noise statistics. In view of this, we formulate the image
restoration problem in the presence of PG noise in a variational framework, where we express
and study the exact data fidelity term. After establishing the Lipschitz differentiability and
convexity of the exact PG neg-log likelihood, we derive a primal-dual optimization algorithm
for the reconstruction of images degraded by a linear operator and corrupted with PG noise.
Using recent primal-dual convex optimization algorithms, we obtain results that outperform
methods relying on a variety of approximations. The proposed approach is validated on image
restoration examples.
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Image denoising with Kantorovich-Rubinstein discrepancy
List of authors:

D. Lorenz 1

One of the most prominent models for image denoising is the Rudin-Osher-Fatemi model [3], in
which one minimizes, for a given u0 ∈ L2(Ω) the functional∫

Ω
(u− u0)2 dx+ λTV (u)

with some λ > 0 and TV denoting the total variation of u. Although the method does remove
noise and preserves edges well, some drawbacks of this model has been identified, namely a loss
of contrast and the staircasing effect. The loss of contrast can be overcome by either using a
so-called Bregman-iteration or by changing the discrepancy term to a one norm as proposed by
Chan and Esedoglu [2]: For a given u0 ∈ L(Ω) one minimizes∫

Ω
|u− u0| dx+ λTV (u).

This method indeed preserves the contrast als also enjoys a kind of contrast invariance. However,
staircasing still occurs.

With respect to staircasing, several adaptions of the TV seminorm has been proposed, most
notably the total generalized variation TGV by Bredies, Kunisch and Pock [1].

In this talk we will leave the domain of function spaces and model images in the space M(Ω) of
Radon measures. The space L1(Ω) is embedded in M(Ω) and it even holds that ‖f‖1 = ‖f‖M.
However, there are other norms on the space of Radon measures which capture more geometric
information. One example is the Kantorovich-Rubinstein norm which is defined by duality as

‖µ‖KR = sup{
∫
f dµ : |f | ≤ 1, Lip(f) ≤ 1}

(where Lip(f) stands for the Lipschitz constant of f). The Kantorovich-Rubinstein norm in-
duces a metric dKR(µ, ν) = ‖µ−ν‖KR which does metrize weak-* convergence of Radon measure
which is strictly weaker than norm convergence.

In this talk we will show how the Kantorovich-Rubinstein norm can be used as dicrepancy term
for total variation denoising, i.e. we will consider the minimization of

‖u− u0‖KR + λTV (u).

We present a primal dual method to solve the minimization problem and it turns out that the
resulting algorithm is only slightly more involved than for the Chenc-Esedoglu model. Numerical
examples indicate that the proposed model does not suffer from contrast lost and does produce
much less staircasing that the Rudin-Osher-Fatemi and the Chan-Esedoglu model.

1Institute for Analysis and Algebra, TU Braunschweig, 38092 Braunschweig, Germany
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An entropy model for diffusion MRI
List of authors:

Pierre Maréchal 1

Diffusion MRI has developped in the recent past as a method for non-invasive imaging of the
diffusion process of water in biological tissues. Since diffusion is affected by obstacles such as
membranes and fibers, diffusion MRI opens the way to mapping fiber structures (e.g. neurons or
muscle fibers). The diffusion MRI data are samples of the Fourier transform of the probability
density of particle displacements in each voxel of the volume to be imaged. The sampling is
generally poor: the probability density must be inferred from a few dozens of Fourier samples.
The idea of using the maximum entropy principle in this context appeared, to the best of our
knowledge, in a paper published in 2005 by D. Alexander [1]. In this paper, the displacement is
assumed to be confined to a sphere centered at the intitial point of the particle. In order to better
suit the physics of the diffusion process, we propose to relax this constraint and build a more
general methodology. The Kullback-Leibler relative entropy is used to measure the discrepancy
between the probability to be inferred and some reference measure. The obtained optimization
problem is then studied usind tools from partially infinite convex progamming. The solution
can be computed via the unconstrained maximization of a smooth concave function, whose
number of variable is merely (twice) the number of Fourier samples.
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Optical flow with oscillating pattern
List of authors:

A. R. Patrone 1

O. Scherzer 2

In this paper we present a variational method for determining cartoon and texture components of
the optical flow[2] of a noisy image sequence. The method is realized by applying decomposition
methods[1] and then by using spatio-temporal regularizers[4][5]. We study a decomposition for
the optical flow into bounded variation and oscillating component[3] in greater detail. Numerical
examples demonstrate the capabilities of the proposed approach.
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Higher-Order Variational Techniques for Image Reconstruction and
Enhancement
List of authors:

C.-B. Schönlieb 1

Restoring the original image contents from distorted measurements is one of the most important
tasks in image processing. It comprises the enhancement and reconstruction of images distorted
by noise or blur (image denoising/deblurring), the filling-in of gaps in images (image inpainting)
and the reconstruction of an image from noisy (and possible undersampled) Fourier/Radon mea-
surements. Within various standard methodologies for the solution of these tasks, variational
approaches constitute a rich toolbox of methodologies for image reconstruction and enhance-
ment. These techniques are interesting from both an applicational viewpoint - because they
are able to produce qualitatively good visual results and can be captured within automatable
processing algorithms - but also from a mathematical analysis point of view - because they show
some beautiful mathematical concepts and pose interesting analytical problems.

(a) Noisy photograph (b) Gaussian denoising

(c) Total variation denoising (d) Total generalised variation denoising

Figure 1: Different methods for image denoising.2

1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, UK

2Photo courtesy of Kostas Papafitsoros
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Among the pioneers of these approaches are Rudin, Osher and Fatemi who introduced in 1992
the total variation for image regularisation [8]. In Figure 1c an example for total variation
denoising is shown. In comparison with the Gaussian filtered image in Figure 1b image struc-
tures, such as edges are much better preserved. Yet, total variation denoising is far from being
the ‘perfect’ denoising method: it introduces the so-called staircasing effect in the parts of the
image which undergo a linear change of grey values (such as on the bonnet of the car). In the
last couple of years alternatives and extensions of total variation denoising have been proposed,
which aim to improve upon the staircasing artefacts by introducing higher-order derivatives
into the denoising model, compare e.g. [4, 6] and references therein. A very successful approach
along these lines is total generalised variation denoising proposed in [2], compare Figure 1d.

In this presentation we shall concentrate on the specific class of higher-order variational tech-
niques, i.e., second- and third-order. After spending some time on introducing the concept of
such methods and giving a historical overview of some important contributions in this area,
we will get to know some recently proposed higher-order methods, their mathematical proper-
ties and applications. The presentation will be furnished by various numerical examples and
applications for image restoration [3, 7], surface interpolation [5] and MRI [1].
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Motion-Corrected PET Reconstruction
List of authors:

S. Suhr 1

M. Burger 2

J. Modersitzki 3

Motion corrected PET Reconstruction is one of the most challenging tasks in medical imag-
ing. Recently algorithms for reconstruction with incorporated motion informations aswell as
algorithms for motion estimation have been developed. We present a variational framework for
simultaneous reconstruction and motion estimation with Kullback-Leibler data fidelity term,
TV regularization for the tracer activity and hyperelastic regularization for the motion vector
field.

We give some details on the modelling and enlighten the difference between describing the
activity in Eulerian and Lagrangian coordinates. A First-Discretize-Then-Optimize approach
leads to alternating minimizing the funcional in two steps. In the first step we show that we can
easily apply standard EM-TV algorithms on the motion corrected case. The second step leads
to a standard registration problem, but with a distance measure defined on the detector domain.
We use a multi-level approach combined with a modified BFGS method for the optimization.
The talk concludes with the comparison of some numerical results.

1MIC Lübeck and WWU Münster
2WWU Münster
3MIC Lübeck
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Pontryagin’s principle for multidimensional control problems with

polyconvex data

List of authors:

M. Wagner 1

We consider multidimensional control problems of Dieudonné-Rashevsky type

F (x, u) =

∫
Ω
f(s, x(s), u(s)) ds −→ inf ! ; (x, u) ∈W 1,p

0 (Ω,Rn) × L
p(Ω,Rnm) ; (1.1)

Jx(s) =

 ∂x1(s)/∂s1 ... ∂x1(s)/∂sm
...

...
∂xn(s)/∂s1 ... ∂xn(s)/∂sm

 = u(s) for almost all s ∈ Ω ; (1.2)

u(s) ∈ K ⊂ Rnm for almost all s ∈ Ω (1.3)

with n, m ≥ 2, Ω ⊂ Rm and a compact set K ⊂ Rnm with nonempty interior. In the case of a
convex integrand f(s, ξ, · ) and a convex restriction set K, the global minimizers of (1.1) − (1.3)
satisfy first-order necessary optimality conditions in the form of Pontryagin’s principle even
though the usual regularity condition for the equality operator fails. In our talk, we provide
extensions of these optimality conditions to the case of polyconvex integrands and restriction
sets. Applications to hyperelastic image registration will be discussed.
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A Non-smooth Algorithm and Application to Eigenstructure Assignment
List of authors:

N.M. Dao 1

D. Noll 2

P. Apkarian 3

We discuss a non-smooth algorithm for solving general constrained optimization programs of
the form

minimize f(x)
subject to c(x) ≤ 0

Ax ≤ b
(1)

where x ∈ Rn is the decision variable, and f and c are potentially non-smooth and non-convex,
and where the linear constraints are gathered in Ax ≤ b and handled directly. We use a progress
function at the current iterate x,

F (·, x) = max{f(·)− f(x)− µc(x)+, c(·)− c(x)+},

which is successively minimized subject to the linear constraints.

Based on the results on the convergence theory of algorithm discussed in [1, 3], we show the
following

Theorem 1. Suppose that f and c in program (1) are lower-C1 functions such that the
following conditions hold.

(a) f is weakly coercive on the constraint set Ω = {x ∈ Rn : c(x) ≤ 0, Ax ≤ b}, i.e., if xj ∈ Ω
and ‖xj‖ → ∞, then f(xj) is not monotonically decreasing.

(b) c is weakly coercive on P = {x ∈ Rn : Ax ≤ b}, i.e., if xj ∈ P and ‖xj‖ → ∞, then c(xj)
is not monotonically decreasing.

Then the sequence of serious iterates xj ∈ P generated by our algorithm is bounded, and
every accumulation point x∗ of the xj satisfies x∗ ∈ P and 0 ∈ ∂1F (x∗, x∗) + A>η(x∗), where
η(x∗) = {η ∈ Rm : ηi ≥ 0, ηi = 0 if a>i x

∗ < bi} with A := [a1 . . . am]>. In other words, x∗ is
either a critical point of constraint violation, or a Karush-Kuhn-Tucker point of program (1).
�

We next consider the problem of eigenstructure assignment for output feedback control. Our
method allows to place the eigenelements (λi, vi, wi) simultaneously. This is possible by a
combination of linear algebra and nonlinear optimization techniques. The efficiency of the new
approach is demonstrated for aerospace applications.
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Three-field Modeling of Nonlinear Non-smooth Boundary Value
Problems and Differential Mixed Variational Inequalities

List of authors:
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The well-known Babuka-Brezzi theory for mixed variational problems has been extended by
Gatica [1, 2] to some classes of variational problems and nonlinear operator equations. This
extension leads to three-field variational models that can be understood as dual-dual mixed
variational models or as two-fold saddle point formulations. Such augmented variational models
are well-adapted for multi-physics problems with different coupled unknown quantities and in
particular for mechanical engineering problems, where speaking in terms of solid mechanics,
strains and stresses are often of more interest then displacements.

In this talk we discuss how this three-field modeling can be further extended to a class of
nonlinear nonsmooth elliptic boundary value problems and also related parabolic initial bound-
ary value problems that stem from steady-state unilateral contact with Tresca friction in solid
mechanics and from nonlinear transient heat conduction with unilateral boundary conditions,
respectively.

This approach leads to variational inequalities of mixed form for three fields as unknowns.
Based on the Browder-Minty monotonicity method for nonlinear variational inequalities we
provide a well-posedness result in the elliptic case. Moreover using Mosco set convergence, we
also establish stability results, where we admit perturbations in the nonlinear operator and in
the nonsmooth functional. Thus we complement earlier stability results in [3, 4] on variational
inequalities in the primal form.

References

[1] G. N.Gatica: An application of Babuka-Brezzis theory to a class of variational problems.
Appl. Anal. 75(3-4):2000,297-303.

[2] G.N. Gatica: Solvability and Galerkin approximations of a class of nonlinear operator
equations. Z. Anal. Anwend. 21(3):2002,761-781.

[3] J. Gwinner: On differential variational inequalities and projected dynamical systems—
equivalence and a stability result. Discrete Contin. Dyn. Syst, ser. A , 2007,467–476.

[4] J. Gwinner: Stability of monotone variational inequalities with various applications, Vari-
ational inequalities and network equilibrium problems (Erice, 1994), 123–142.

1Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr München, Germany

35



Convergence of non-smooth descent methods and the
Kurdyka- Lojasiewicz inequality
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It is well-known that gradient-oriented descent methods converge to critical points in the sense
of subsequences under the Armijo condition in tandem with a safeguard against too small
steps. Absil et al. [1] have shown that convergence to a single critical point occurs for analytic
objectives. Their proof was later seen to carry over to objective functions satisfying a Kurdyka-
 Lojasiewicz inequality, see [3]. Genuine new features in the C1-case were discovered in [2].

In this talk we investigate whether similar convergence results may be expected for non-smooth
descent methods. In [4] Attouch and Bolte show indeed that the non-smooth proximal point
method converges under the Kurdyka- Lojasiewicz inequality. On the other hand, inspection
of [3] seems to indicate that all other known cases of convergence under KL are essentially
elaborate combinations of these two prototypes (smooth or proximal point), with basically the
same mechanism of proof at work.

In [5] we give strong evidence that there may indeed be a principal reason for this limitation. On
the positive side, we also present a class S of non-smooth functions, containing the upper C1-
functions, which has the property that whenever f ∈ S satisfies a KL-inequality, then a gradient-
oriented descent scheme for f (suitably generalized to the non-smooth context) converges to a
single critical point.
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Crystallization is a separation technique widely used in the chemical, pharmaceutical, ma-
terial and semiconductor industries. It is used to produce high purity compounds with tight
specifications on product quality. Crystallization of a supersaturated solution is triggered by
cooling, evaporation of solvent, addition of anti-solvent, or by chemical reactions [1, 2]. Math-
ematically, crystallization processes are represented as complex systems based on population,
mass or molar, and energy balance equations.

For a number of reasons, there has been growing interest in the crystallization of lactose [3]
in the food processing industry, particularly so because α-lactose monohydrate is the most
common form of lactose in the fabric of medications. The specificity of crystallization of α-
lactose monohydrate is that two forms of lactose (α- and β-lactose) exist simultaneously in
aqueous solution, their exchange being governed by mutarotation, and that crystallization of α-
lactose is solvated, which means a single water molecule is incorporated into the crystal structure
at nucleation. The mathematical model therefore includes four interacting populations, one of
them aging, so that controlling the process becomes a challenging task.

In this study we present a model of solvated crystallization of α-lactose monohydrate, and
then use it control the process in semi-batch mode by acting on the feed rate, the crystallizer
temperature and on the crystal seed as a parameter. The goal is to steer the process in such a
way that the growth of small particles within a specified range is privileged. Numerical solutions
have been computed with the ACADO [5] toolbox and with the solver PSOPT [4].
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Convergence of Linesearch and Trust-Region Methods using the
Kurdyka- Lojasiewicz Inequality
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Global convergence for linesearch descent methods traditionally only assures subsequence con-
vergence to critical points, while convergence of the entire sequence of iterates is not guaranteed.
Similarly, subsequence convergence in trust-region methods is establish by relating the progress
of trial points to the minimal progress achieved by the Cauchy point. These results are usually
proved for C1,1 or C2-functions.

Recently Absil et al. [1] proved convergence of iterates of descent methods to a single limit-point
for analytic objective functions, using the fact that this class satisfies the so called  Lojasiewicz
inequality. In [6] we prove convergence of linesearch and trust-region descent methods to a single
critical point for C1 functions satisfying the Kurdyka- Lojasiewicz inequality, a generalization
of the  Lojasiewicz inequality. This is motivated by recent convergence results based on this
condition in other fields, see e.g. [2], [4], [5, 3].

For linesearch methods we prove convergence for C1 functions, and we show that it is allowed
to memorize the accepted steplength between serious steps if the objective is of class C1,1. This
option may be of interest for large scale applications, where second-order steps are not practical,
and re-starting each linesearch at t = 1 may lead to unnecessary and costly backtracking.

For trust-region methods we discuss acceptance tests which feature new conditions on the
curvature of the objective along the proposed step, in tandem with the usual criteria relating
the achieved progress to the minimal progress guaranteed by the Cauchy point.
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Efficient Parameter Optimization for Elliptic Homogenization Problems
via Model Reduction and Error Control
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The mathematical description of natural and technical processes often leads to parametrized
problems with multiple scales. In applications we often meet the multi-query context: for exam-
ple in optimal control or during parameter studies, the model has to be evaluated repeatedly for
a large variety of different parameters. With classical discretization techniques like FEM this
often becomes prohibitively costly. The reduced basis method (RBM) [4] is a well established
technique in such scenarios. The general idea behind the RBM is to project the original model
onto low-dimensional reduced ansatz spaces. These spaces are built up of sample solutions for
specially chosen parameters. The most important ingredient is an offline/online decomposition
which allows a separation of the high-dimensional computations (e.g. basis generation) from
the low-dimensional (parameter dependent) reduced scheme.

In this talk, we are considered with elliptic multiscale problems. We investigate macroscopic
cost functionals and treat microscopic design parameters:

min J(uε(µ), µ)

s.t. Cj(u
ε(µ), µ) ≤ 0 ∀j = 1, . . . , N ∈ N,

µ ∈ P ⊂ Rp

 (1)

with real valued functional J,Cj . Here, uε(µ) is (weak) solution of the parametrized multiscale
problem

∇ · (Aε(µ)∇uε(µ)) = f

+ suitable B.C.

}
(2)

with a rapidly oscillating and parameter dependent diffusion tensor Aε(µ).

For the model reduction we replace the multiscale problem by its homogenization limit (cf.
[2]) which can be considered as a prototypal approach for more general numerical multiscale
schemes that make use of the scale separation (like the heterogeneous multiscale method, cf.
[1]). A posteriori error estimates for the forward problem (cf. [3]) are obtained in the periodic
homogenization setting using a two scale weak formulation of the original multiscale problem.
These error estimates allow for an offline/online splitting and are therefore suitable for both
the construction of accurate reduced basis spaces and the online evaluation of the reduced
approximations. The method also allows for efficient calculation of parametric derivatives which
are neccessary for the optimization algorithm.
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puting, Vysoké Tatry – Podbanské, September 9-14, 2012, pp. 272–281.

[3] M. Ohlberger, M. Schaefer (2013): Error Control Based Model Reduction for Parameter
Optimization of Elliptic Homogenization Problems. Accepted for the Proceedings of the 1st
IFAC Workshop on Control of Systems Governed by Partial Differential Equations, Paris,
September 25-27, 2013 (accepted).

[4] A.T. Patera, G. Rozza (2007): Reduced Basis Approximation and a Posteriori Error Es-
timation of Parametrized Partial Differential Equations. To appear in (tentative rubric)
MIT Pappalardo Graduate Monographs in Mechanical Engineering

41



 

42



 

 

 

 

 

Minisymposium on  

Optimal Control and Games 
organized by Hélène Frankowska and Marc Quincampoix 

  

43



 

44



L∞ Optimal Control Problems as Dynamic Differential Games
List of authors:
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L∞ (or minimax) problems consist in minimizing the (pointwise) maximum of a running cost
along the trajectory. These control problems have been extensively studied from various points
of view, including dynamic programming, numerical approximations, and necessary conditions
(see e.g. [1], [2], [3], [4]). We consider an L∞ optimal control problem in which the payoff is the
sum of an L∞ functional and a classical Mayer functional (the latter being a right end-point
functional). Owing to the 〈L1,L∞〉 duality, we rephrase the L∞ control problem in terms of a
static differential game, where a new variable k is introduced and plays the role of an opponent
player who wants to maximize the cost. A relevant fact is that this static game is equivalent to
the corresponding dynamic differential game, which allows the (upper) value function to verify
a boundary value problem. This boundary value problem involves a Hamilton-Jacobi equation
whose Hamiltonian is continuous. The value function of the game W(t, x, k) –whose restriction
to k = 0 coincides with the value function of the reference L∞ problem– is continuous and solves
the established boundary value problem. Furthermore, W is the unique viscosity solution in
the class of (not necessarily continuous) bounded solutions.
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An Optimal Control Approach for the Design of Low-energy Low-thrust
Trajectories Between Libration Point Orbits
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In this talk, we investigate the numerical computation of minimum-energy trajectories between
Libration point orbits in the circular restricted three-body problem [1]. We will consider a low-
thrust spacecraft and will focus our attention on its transfer between Lyapunov orbits around
the Lagrange points L1 and L2 of the Earth-Moon three-body problem. These departure and
arrival periodic orbits will be computed using Lindstedt-Poincaré techniques [2]. It is known
from dynamical system theory [3, 4, 5] that almost zero-cost transfers exist for particular values
of the transfer duration when the two orbits have the same Jacobi constant. These so-called
heteroclinic connections follow in part the invariant manifolds of the departure and arrival orbits
[3, 4, 5] and require small impulsive thrusts that are not achievable by means of a low-thrust
propulsion system. However, trying to determine low-energy low-thrust trajectories by solving
the minimum-energy optimal control problem appears to be very difficult or even impossible
from a medium value of the transfer duration. In particular, indirect shooting methods fail
mainly due to the hypersensitivity of the state and costate equations.

In this talk, we develop a three-step methodology for solving the minimum-energy optimal con-
trol problem without using information from the invariant manifolds of the initial and final
orbits. With this aim, we first determine a feasible control with quadratic-zero-quadratic time
structure. Then we build an optimal control problem whose solution is equal to this feasible
control. In the second step, this problem is embedded in a family of problems depending on
a parameter ε. For each problem, the departure location from the first orbit and the arrival
location at the target orbit are fixed to the non-optimal values associated with the feasible con-
trol. These problems are solved by continuation on ε until we obtain a suboptimal trajectory
connecting the two Lyapunov orbits. Each problem is solved thanks to an indirect single shoot-
ing method. The Jacobian of the shooting function is computed using variational equations.
Finally, in the last step of the method, the minimum-energy solution is obtained by determin-
ing the optimal value of the departure location from the initial orbit and that of the arrival
location at the target orbit. Numerical results are provided demonstrating the efficiency of the
developed approach for different values of the transfer duration leading to trajectories with one
or two revolutions around the Moon.

In conclusion, this talk proposes a new methodology that allows the computation of low-energy
low-thrust transfers between Libration point orbits. This methodology, based on indirect opti-
mal control, variational equations and continuation techniques makes no use of invariant man-
ifolds in contrast with existing approaches. The latter either build a non-optimal approximate
trajectory based on the invariant manifolds [6, 7] or use direct methods [8] taking advantage
of the manifolds. Indeed, direct methods allow enforcing coast arcs when the spacecraft is
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supposed to be close to the invariant manifolds, thereby facilitating the convergence towards
the low-energy solution [9]. The methodology presented in this talk paves the way for the de-
velopment of an effective indirect approach for computing low-energy low-thrust Earth-Moon
transfers in the Sun-Earth-Moon bicircular restricted four body problem. This challenging
problem of great interest has only been addressed for far by means of direct methods [10].
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A Second-Order Maximum Principle in Optimal Control
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This talk will address new second order necessary optimality conditions for the Mayer optimal
control problem under state constraints. The obtained conditions include both pointwise and
integral inequalities and extend earlier results.

For this aim we first derive a second-order variational inclusion for control systems under state
constraints and obtain a sufficient condition for normality of the maximum principle. Then
we apply these results to get a second order necessary optimality condition, which leads to
a maximum principle under state constraints containing three additional inequalities. The
first one involves the second order tangent to the dynamics, while the second one involves the
derivatives of dynamics with respect to the state variable. Both these inequalities have to be
satisfied pointwise. Finally the third inequality is of the integral type, like the classical one in
the second order necessary optimality conditions, but it may contain extra terms.

Some extensions to the Mayer differential inclusion problem under state constraints will be also
provided. Details can be found in [2].
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We consider an optimal control problem of the Mayer form with the control system ẋ = f(t, x, u),
control constraints u(t) ∈ U(t) and pure state constraints x(t) ∈ K.

Traditionally, second-order optimality conditions for optimal control problems with state con-
straints are derived from abstract results stated for mathematical programming problems in
infinite dimensional Banach spaces. In this presentation we use instead a variational approach
and show how to obtain second-order optimality conditions directly, by using second-order
variational equations.

The main advantage of such direct approach is that we are no longer bound to the Banach
space setting, therefore we are able to prove optimality conditions for optimal controls that
are merely measurable in contrast to many known results that require optimal controls to be
continuous or piecewise continuous. In addition, it allows to separate the proofs of the first- and
second-order necessary conditions. In particular, our result applies to any first-order necessary
optimality conditions in the form of the constrained maximum principle. Another important
outcome of this approach is that we have to impose only very mild assumptions on the control
constraints and in the case of necessary conditions, even the set of state constraints K can be
general.
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A microprocessor can perform at least one order of magnitude more mathematical operations
per second per watt by using fixed-point, rather than floating-point arithmetic units. The main
problem in implementing an algorithm in fixed-point is to decide how many bits to assign to
the integer part in order to avoid overflow errors and/or how to modify an algorithm so that
overflow cannot occur. We will show how to solve this problem and provide a priori theoretical
guarantees that overflow will not occur for two important algorithms:

(i) The Lanczos algorithm is the fundamental building block of the most widely used iterative
linear solvers, such as the conjugate gradient and minimal residual method. By modifying the
algorithm and scaling the data in a suitably-defined manner, overflow errors can be avoided. We
will demonstrate the successful implementation of our results within an interior point solver,
which computes optimal input trajectories for a real-time flight control application. Our fixed-
point implementation of the Lanczos algorithm can sustain more than 40 billion operations
per second per watt on current embedded processors, while still achieving the same accuracy
as a double-precision floating-point implementation. This compares favorably to the Nvidia
GeForce GTX 690, which has a specification of 18.74 billion floating-point operations per second
(gigaflops) per watt, and the Beacon-Appro GreenBlade GB824M, the most energy efficient
supercomputer on the Green500 list (www.green500.org) of November 2012, which is capable
of 2.5 gigaflops per watt when running the LINPACK benchmark.

(ii) The fast gradient method of Nesterov has attracted considerable attention over the last few
years, due to its ease of implementation and good performance on a large class of problems. This
method is particularly amenable to analysis under the assumption of fixed-point arithmetic. We
will present theoretical results that can be used to determine a priori the number of bits required
to achieve a given accuracy in the solution. We will demonstrate how we have successfully used
these results to implement a predictive controller for an atomic force microscope on a low-end
processor, while achieving control update rates in excess of 1 MHz.

The ability to be able to successfully implement linear algebra solvers and optimization algo-
rithms in fixed-point arithmetic, with suitable theoretical guarantees, opens up the possibility
of using optimization methods to solve control and signal processing problems in application
areas that have been considered too challenging up to now.
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We consider a zero-sum differential game where players make simultaneous moves (chosen by
randomization) on the nodes of a commonly known time partition. This allows us to avoid
Isaacs’ condition. The limit as the mesh of the partition goes to zero is characterized as the
viscosity solution of an appropriate HJI equation. Our work builds on a result of W.H.Fleming
[3]. As an application, we provide a model for a continuous time stochastic game.
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Optimal Control of a SEIR Epidemic Model with Mixed and State
Constraints
List of authors:
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In [1] Neilan and Lenhart propose an optimal control problem based on a SEIR compartmental
model to determine vaccination strategies over a fixed period of time. A particular aspect of this
problem is that the optimized criterion is linear with respect to the state and quadratic with
respect to the control. Compartmental models are widely used to study vaccination strategies of
a certain infectious disease. SEIR models are based on the division of the target population into
four compartments; susceptible (S), exposed to the disease but not yet infectious (E), infectious
(I), or recovered (immune) (R). Such models can represent many human infectious diseases but
in [1] a generic SEIR model is considered.

In this talk we study the introduction of constraints to the problem proposed in [1]. First we
add mixed constraints, then we consider pure state constraints and, finally, in the third case,
we add mixed constraints to state constraints. Our work can be viewed as a development of [2]
where numerical results of these three cases are presented.

As in [2] we use optimal control solvers to determine the numerical solutions of these problems
but now we undertake an analytical study of the solutions of the two latter cases. We discuss
normality of the solutions and the characterization of some of the multipliers. Moreover, we
discuss the applicability of second order sufficient conditions.
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Metric Regularity and Stability of Optimal Control Problems for Linear
Systems

List of authors:
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V. Veliov 2

We investigate stability properties of the solutions of optimal control problems for linear sys-
tems. The analysis is based on an adapted concept of metric regularity, the so-called strong
bi-metric regularity, which is introduced and investigated in the paper. It allows to give a more
precise description of the effect of perturbations on the optimal solutions in terms of a Hölder-
type estimation, and to investigate the robustness of this estimation. The Hölder exponent
depends on a natural number k, which is known as the controllability index of the reference
solution. An inverse function theorem for strongly bi-metrically regular mappings is obtained,
which is used in the case k = 1 for proving stability of the solution of the considered optimal
control problem under small non-linear perturbations. Moreover, a new stability result with
respect to perturbations in the matrices of the system is proved in the general case k ≥ 1.
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Proximal subdifferentiability and local regularity of the value function of
Mayer’s problem with differential inclusions

List of authors:

T. Scarinci 1

The goal of this talk is the study of the local regularity of the value function of a Mayer problem,
where the state equation is given by a differential inclusion of the type:

ẋ(t) ∈ F (x(t)), for a.e. t ∈ [t0, T ],

x(t0) = x0,
(1)

where F is a multifunction subject to suitable structural assumptions. The value function of
such a problem is locally semiconcave in (−∞, T ] × Rn (see [2]) and satisfies, in the viscosity
sense, the Hamilton Jacobi equation:

−ut + H(x,−ux) = 0, (2)

where H is the Hamiltonian defined by:

H(x, p) = sup
v∈F (x)

〈v, p〉. (3)

On the other hand, it is well known that V fails to be everywhere differentiable, in general.
Even when V is differentiable at a point (t, x), this dress not yields that V is smooth in a
neighborhood of (t, x). When equation (2) is associated to a Bolza problem in the calculus of
variations, a sufficient condition for the local regularity of V has been recently proposed in [1]
. Such a condition requires, among others things, the existence of a proximal subgradient of V
at (t0, x0).
In this talk we will recover a similar result for a Mayer problem associated to (1). An essential
step of the analogies is the proof of a so-called proximal subgradient inclusion, which is also a re-
sult of indipendent interest. The main technical difficulty of the recent problem, compared with
the situation studied in [1] , is the fact that the Hassian matrix is only positively semidefinite
in the case of Mayer’s problem. Indeed, for a geometric Hamiltoniana we have that:

Hpp(x, p)p = 0, for all x ∈ Rn, p ∈ Rn \ {0}. (4)

Nevertheless, we will prove that if Hpp(x, p) is positive definite in all direction that are orthogor-
nal to a vector p, then we can derive the local smoothness of V .
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Stability of value functions for state constrained Bolza problems.
List of authors:

H. Sedrakyan 1

In this talk we consider a family of Bolza optimal control problems and investigate stability
properties of their value functions. The stability is guaranteed by the classical assumptions
imposed on Hamiltionians and an inward pointing condition on state constraints. As a biprod-
uct of this investigation we also show uniqueness of solutions to a family of state-constrained
Hamilton-Jacobi equations and new representation theorems for Hamiltonians that are convex
in the last variable.
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On some links between discrete time and continuous time dynamic
games

List of authors:

S. Sorin 1

We will describe some connections between two-person zero-sum games in discrete and contin-
uous time.

The first topic concerns approachability. We show the relation between weak approachability
(asymptotic approach) in discrete time repeated games and the value of differential games with
fixed duration. Similarly we exhibit the connection, in terms of value and strategies, between
approachability (uniform approach) in repeated games and qualitative differential games.

A second topic is the use of comparison theorems and viscosity tools to prove the existence
of an asymptotic value, for all vanishing evaluations in three classes: games with incomplete
information, absorbing games and splitting games.
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57



The Goh and the generalized Legendre-Clebsch conditions for closed
control constraints

List of authors:

D. Tonon 1

H. Frankowska 2

We present second order necessary optimality conditions for the Mayer optimal control problem
when the optimal control ū(·) is singular. Indeed, in this case, the classical Legendre-Clebsch
condition is no more a useful necessary optimality condition. Alternative pointwise necessary
optimality conditions, known as Goh and generalized Legendre-Clebsch conditions, were proved
by Goh in [3], in the case of an open control constraint. When the control set U is a closed subset
of Rm, new techniques are necessary even when dealing with points that are in the interior of it.
We show that, if an optimal control ū(·) is singular and integrable, then for almost every t such
that ū(t) is in the interior of U , both the Goh and a generalized Legendre-Clebsch conditions
hold true. Moreover, when the control set is a convex polytope, similar conditions are verified
on the tangent subspace to U at ū(t) for almost all t’s such that ū(t) lies on the boundary ∂U
of U . The Goh condition is valid also for U having a smooth boundary at every t where ū(·) is
singular, integrable and ū(t) ∈ ∂U. These conditions are contained in [1, 2].
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On the criticality for vector-valued functions
List of authors:

Ewa M. Bednarczuk 1

In this talk we analyse the criticality for vector-valued functions basing ourselves on the modifi-
cation of the definition given by Smale. The proposed approach relies strongly on quasi-relative
interior of the ordering cone instead of its topological interior. This allows us to make the
concept of criticality operational for vector optimization problems where the ordering cone has
empty topological interior. With the help of the introduced concept we prove necessary opti-
mality conditions for closed convex pointed cones (with nonempty quasi-relative interiors) and
cone-convex vector-valued functions as well as for closed convex pointed generating cones and
general directionally differentiable vector-valued mappings.
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Proximal alternating minimization methods
List of authors:

Jérôme Bolte 1

joint work with M. Teboulle and S. Sabach

We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a
broad class of nonconvex and nonsmooth minimization problems. Building on the powerful
Kurdyka-Lojasiewicz property, we derive a self-contained convergence analysis framework and
establish that each bounded sequence generated by PALM globally converges to a critical point.
Our approach allows to analyze various classes of nonconvex-nonsmooth problems and related
nonconvex proximal forward-backward algorithms with semi-algebraic problem’s data, the later
property being shared by many functions arising in wide variety of fundamental applications.
A by-product of our framework also shows that our results are new even in the convex setting.
As an illustration of the results, we derive a new and simple globally convergent algorithm for
solving the sparse nonnegative matrix factorization problem.
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Error Bounds for a Discrete Optimal Control Problem with State
Constraints
List of authors:

J. Frédéric Bonnans 1

Adriano Festa 2

We study the error introduced in the solution of an optimal control problem with state con-
straints, for which the trajectories are approximated with a classic Euler scheme. Although
some results in the subject have been already presented by Hager and Dontchev [3] our analysis
is proposed here as an another point of view on the issue. We derive our results using some
techniques coming from the sector of perturbation analysis [2] and that procedure has some
interesting and original aspects.

The problem can be presented in the following way: let us consider the following state con-
strained optimal control problem

(P)


Minimize φ(y(T )); subject to
ẏ(t) = f(u(t), y(t)), for a.a. t ∈ [0, T ];
y(0) = y0;
g(yt) ≤ 0 t ∈ [0, T ].

(1)

where the control u(t) and the state y(t) are respectively in the spaces U := L∞(0, T ;Rm) and
Y := W 1,∞(0, T ;Rn), and g : Rn → Rm is the constraint. We call u∗(t) an optimal control
which generates an optimal trajectory for the problem. We consider now, the Euler discrete
version of the same problem, where an uniform sampling of the time is introduced, i.e. for
N ∈ N and h = 1/N we call tk := kh for k = 0, ...N and uk := u(tk), yk := y(tk).

(Pd)


Minimize φ(yN ); subject to
yk+1 = yk + hf(uk, yk), for k = 0, ..., N − 1;
y0 = y0;
g(yk) ≤ 0 for k = 0, ..., N − 1.

(2)

In this work, we arrive to prove that the error ||u∗(tk) − uk||∞ is an O(h). Analogous rates
will be obtained also for the costate function and the constraints multiplicators. Some peculiar
difficulties due to the state constraints will be discussed and studied.

The interest in this subject is widely justified by the large use of this kind of numerical schemes
in applications.
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How to Deal with the Pareto set of a Multiobjective Optimal Control of
Parabolic Systems

List of authors:

H. Bonnel 1

The solution set (Pareto or efficient set) of a multiobjective optimization problem is often very
large (infinite and even unbounded). The grand coalition of a cooperative differential game can
be written as a multiobjective optimal control problem. Assuming that this game is supervised
by a decision maker (DM), the DM can use his own (scalar) objective for choosing a solution
(control). Of course this solution must satisfy all the players of the grand coalition, hence must
be a Pareto solution. Another interest for the study of this problem is that it may be possible
to avoid the generation of all the Pareto controls set.

For multiobjective mathematical programming problems (finite dimensional optimization) there
are many contributions in this field (see e.g. [5] for an extensive bibliography). Some recent
results for the stochastic case can be found in [2]. My talk deals with a new setting: mulitob-
jective control of convex optimal parabolic systems, generalizing some results of [4], which have
been extended for semivectorial bilevel optimization problems in [3]. My talk is based on my
recent paper [1].
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The application of advanced optimization techniques for fast
identification of step changes in parameters of linear continuous system

List of authors:

W. Byrski 1 J. Byrski 2 D. Kmiecik 3  L. Kuśnierz 4

A main contribution of this talk will be the presentation and wide discussion on the new ad-
vanced optimization methodologies used for fast identification of abrupt changes of parameters
in continuous systems and the application of these algorithms to identification of parameters
of real physical system represented by the model of Segway Personal Transporter (inverted
pendulum). Researches on the efficient and effective algorithms suitable for this purpose were
carried out by the authors1,2 e.g. in [3, 4]. Variety of other methods for solving this topic are
proposed in many publications, but mainly for stochastic signals and discrete systems, e.g. [1].
Identification methods for continuous systems with constant parameters one can find in e.g.
works of H. Unbehauen and G.P. Rao. Let us assume that linear, continuous SISO system

of n-th order (m ≤ n) is given
n∑

i=0
ai y

(i)(t) =
m∑
j=0

bj u
(j)(t). Signals of system input u(t) and

output y(t) are measured for t ≥ 0, where u and y ∈ L2[0, T ]. The signals y(i)(t), u(j)(t) for
i > 0, j > 0, represent unknown i-th and j-th derivatives of the output and input, respectively,
as well as ai, bj represent n+m+2 unknown constant parameters forming the parameter vector
Θ. This model is valid within time interval t ∈ [0, tF ]. At the moment tF step changes in all
parameters will appear, hence for t > tF the new model with another unknown parameters Θ̄

should be assumed
n∑

i=0
āi ȳ

(i)(t) =
m∑
j=0

b̄j ū
(j)(t). Before starting the main computation stage of

parameter identification, one should solve the problem of unknown derivatives by the use of
some type of preprocessing calculations based on convolution transformation of the differential
models into their algebraic forms with the same unknown parameters. This procedure is known
as modulating function method [5, 6]. Special modulating function ϕ with compact support
and known derivatives ϕ(i) is used. Such transformation represents the finite interval moving
window of width h, continuously shifting along the time axis. This operation generates the new
functions yi(t), ui(t) and ȳi(t), ūj(t) and forms two algebraic models with parameters Θ and Θ̄:

n∑
i=0

ai yi(t) =
m∑
j=0

bj uj(t) t ∈ [h, tF ] and
n∑

i=0

āi ȳi(t) =
m∑
j=0

b̄j ūj(t) t ∈ [tF + h, T ]

For the best identification of each algebraic model in some chosen interval TID the problem of
minimization of the norm of equation error function εEE(t) in L2[h, h+TID] will be solved. This
norm is represented by quadratic form of parameters Θ with real symmetric Gram matrix G (or
Ḡ) of inner products of all functions yi(t), ui(t) (or ȳi(t), ūi(t)), for both models. The solution
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of optimization tasks goes from the minimization of these norms under quadratic constraints
(parameters belong to unit balls). The optimal parameters are represented by an eigenvector
wmin which corresponds to the minimal eigenvalue λmin of suitable Gram matrix. The same
optimization method one can apply in on-line mode with the use of the Moving Identification
Window and the sliding interval [t− TID, t]. This method of identification for constant or slow
varying parameters gives very good results and was presented and tested by the authors1,2 in
different publications e.g. [2, 3]. However, for rapid changes of parameters it occurred that after
the moment of fault tF this method gives bad results in the interval t ∈ [tF , tF + h + TID].
This is due to the fact that in this interval the preprocessing convolution procedure is not
valid on the whole window [t − h, t], because it will depend partly on Θ and partly on Θ̄. In
work [4] the authors proposed the solution to this problem by the formulation of the new rules
for calculation of the convolution transformation inside the interval t ∈ [tF , tF +h], by dividing
the convolution window [t− h, t] into two subintervals: [t− h, tF ] and [tF , t], connected with Θ
and Θ̄, respectively. Consequently, in the second stage of identification, it will be possible to use
another type of the main identification processing window with expanding width [tF , t] for every
t, instead of the standard moving identification window of fixed width [t−TID, t]. It will enable
identification of new parameters Θ̄ for t > tF practically without any dead time. Hence, for the
interval t ∈ [tF , tF + h] the new formula for calculation of the optimal parameters was derived
and has a form of the continuous version of the least squares optimal solution for parameter
identification. The numerical experiments have confirmed fast and accurate properties of the
new identification idea. The results of identification of inverted pendulum parameters will be
presented in final version of the paper.
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Second-Order Necessary Conditions in Pontryagin Form for Optimal
Control Problems

List of authors:

X. Dupuis 1

J. F. Bonnans 2 L. Pfeiffer 3

We say that optimality conditions for an optimal control problem are in Pontryagin form if
they only involve Lagrange multipliers for which Pontryagin’s minimum principle holds. This
restriction to a subset of multipliers is a strengthening for necessary conditions, and enables
sufficient conditions to give strong local minima [4]. We consider optimal control problems with
pure state and mixed control-state constraints, and we present first- and second-order necessary
conditions in Pontryagin form [1].

They are obtained by a technique of partial relaxation, based on the sliding modes introduced by
Gamkrelidze. The partial relaxation furnishes a sequence of auxiliary optimal control problems,
for which a Pontryagin minimum of the original problem is a weak minimum; necessary condi-
tions for this weak minimum appear, at the limit, to be in Pontryagin form for the Pontryagin
minimum. This technique is classically used to prove Pontryagin’s principle, i.e. first-order
necessary conditions, for general optimal control problems [3]. It has also been combined with
the theory of γ-conditions, whereas we apply here standard optimality conditions, to derive
strengthened second-order necessary conditions [5]. The quadratic conditions in [5] are ob-
tained for problems without pure state constraints; our conditions in Pontryagin form do not
take into account broken extremals.

We mention that we are also able to provide second-order sufficient conditions in Pontrygin
form, and thus to characterize quadratic growth for a strong minimum of such general optimal
control problems [2].
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Variational Inequalities in Bang-Singular-Bang Control Investigation
List of authors:

U. Felgenhauer 1

The talk is devoted to recent results on stability investigation of variational inequalities for
bang-singular-bang controls. For the proofs and further explanation we refer to [1, 2].

Consider the following optimal control problem in Mayer form where the system is control-
affine, and the data functions smoothly depend on a real parameter p near p0 = 0,

(CPp) minimize Jp(x, u) := k(x(1), p) (1)

subject to

ẋ(t) = f(x(t), p) + g(x(t), p)u(t) a.e. in [0, 1], (2)

x(0) = a(p), (3)

0 ≤ u(t) ≤ 1, a.e. in [0, 1] , (4)

x ∈W 1
∞(0, 1;Rn), u ∈ L∞(0, 1;R).

The pair (x̄, ū) ∈ W 1
∞ × L∞ is called admissible for (CPp) if (2) – (4) are fulfilled. It will be

called a local minimizer (in Pontryagin’s sense) if it is admissible, and a constant ε > 0 exists
such that

Jp(x̄, ū) ≤ Jp(x, u) for all admissible (x, u) with ‖x− x̄‖∞ + ‖u− ū‖1 < ε.

For the given problem, Pontryagin’s Maximum Principle yields necessary optimality conditions
and will hold in normal form. Denoting by N+(ν) the normal cone to the non-negative orthant
Rn
+ at ν ∈ Rn

+, the conditions can be written in form of a variational inequality

(VIp) ẋ− f(x, p)− g(x, p)u = 0, x(0)− a(p) = 0,

λ̇+∇x(f(x, p) + g(x, p)u)Tλ = 0, λ(1)−∇xk(x(1), p) = 0,

g(x, p)Tλ − µ1 + µ2 = 0,

− u ∈ N+(µ1), u− 1 ∈ N+(µ2)

for almost every t ∈ [0, 1]. The function λ ∈W 1
∞(0, 1;Rn) is the adjoint or co-state function.

It will be assumed that, for the reference parameter zero, the control has bang-singular-bang
structure, i.e., it achieves its extremal values on certain subintervals to the left and right ends of
the time interval, and takes “singular” values from the interior of the control set in the remaining
part. In [1], the structural stability for bang-singular junction in case of one singular arc of
order one was obtained under rather mild assumptions including the strong Legendre condition
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but without second-order sufficient optimality conditions. Instead, it had to be supposed that
the perturbed system of first-order necessary conditions had a solution.

Recent results on second-order conditions for the problem class in [3] allowed to complete
the investigation and to show (i) the existence and local uniqueness of solutions to (VIp)
w.r.t. a L1 neighborhood of the reference control component, (ii) structural stability together
with L1 Lipschitz continuity of the control w.r.t. parameter perturbation, and (iii) the strict
local optimality of the extremal for problem (CPp). The analysis [2] uses an extended Goh
transformation for the linearized form of (VIp) including the transformation of the related
adjoint equation. Under second-order optimality conditions in the spirit of [3], an auxiliary
monotone variational inequality is derived which determines the control primitive as an element
of L2.

The main stability proofs given further in [2] are essentially based on S.M. Robinsons work on
strongly regular generalized equations. However, the coercivity condition adapted from [3] is
too weak for applying the related Lipschitz theory directly. Instead, a first weak continuity
result has to be combined with the structural analysis of the underlying controls before final
estimates can be obtained.
As a byproduct, structural stability results for a linearization of (VIp) are provided. Finally,
an example illustrates how the assumptions needed for the stability proofs can be checked in
simple situation.
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Case Studies for Optimal Control Problems with Delays
List of authors:
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In this talk we will present an overview about recent developments in the numerical treatment
of optimal control problems with constant time delays:

Minimize J(u, x) = g(x(T ))

subject to the retarded differential equation, boundary conditions and mixed control-state in-
equality constraints

ẋ(t) = f(t, x(t− r0), . . . , x(t− rd), u(t− r0), . . . , u(t− rd)), a.e. t ∈ [0, T ],

x(t) = x0(t), x t ∈ [−rd, 0],

u(t) = u0(t), t ∈ [−rd, 0),

ψ(x(T )) = 0,

C(t, x(t− r0), . . . , x(t− rd), u(t− r0), . . . , u(t− rd)) ≤ 0, a.e. t ∈ [0, T ].

The functions g : Rn → R, f : [0, T ] × R(d+1)·n × R(d+1)·m → Rn, ψ : Rn → Rq, 0 ≤ q ≤ n,
and C : [0, T ]× R(d+1)·n × R(d+1)·m → Rp are assumed to be continuously differentiable, while
the functions x0 : [−rd, 0]→ Rn, u0 : [−rd, 0]→ Rm only need to be continuous.

A minimum principle in form of first-order neccessary optimality conditions for this problem
class under consideration of multiple time delays 0 = r0 < . . . < rd has been derived in a most
recent paper by Göllmann and Maurer [3].

We apply a numerical discretization method by which the delayed control problem is trans-
formed into a nonlinear programming problem. In [3] a proof is given that the associated
Lagrange multipliers provide a consistent numerical approximation for the adjoint variables of
the delayed optimal control problem. We will illustrate the theory and the numerical approach
by various examples taken from chemical engineering and biomedicine.

Among those case studies we will investigate the optimal control of a continuous stirred chem-
ical tank reactor (CSTR) and the optimal treatment of deseases affecting the innate immune
response. The CSTR system was studied earlier by Dadebo and Luus [2] using nonlinear pro-
gramming and dynamic programming methods.

The underlying dynamic model of the innate immune resonse was developed by Asachenkov et
al. [1] and Stengel et al. [5, 6]. We will present a multi-drug combination therapy where four
control variables are optimized simultaneously. It is obvious to introduce delays in the state
and control functions as it usually takes some time for a drug to become effective.
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2Institute of Computational and Applied Mathematics, Westfälische Wilhelms-Universität, Münster, Germany

72



References

[1] A. Asachenkov, G. Marchuk, R. Mohler and S. Zuev, Disease Dynamics. Birkhäuser,
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The LQ–problem for infinite–dimensional systems
with bounded operators

List of authors:

Piotr Grabowski 1

Let H, U and Y be Hilbert spaces with scalar products 〈·, ·〉H, 〈·, ·〉U and 〈·, ·〉Y, respectively.
Our aim in this paper is to minimize the quadratic performance index

J(x0, u) =∞0

[
y(t)
u(t)

]∗ [
Q N
N∗ R

] [
y(t)
u(t)

]
dt , (1)

where Q = Q∗ ∈ L(Y), N ∈ L(U,Y) and R = R∗ ∈ L(U), over trajectories of the system
ẋ(t) = Ax(t) +Bu(t)
x(0) = x0
y(t) = Cx(t)

 , t ≥ 0 . (2)

where (A,B,C) is a triple of bounded operators A ∈ L(H), B ∈ L(U,H), C ∈ L(H,Y).

The following result, generalizing that of [2], will be proved, discussed and illustrated by
an example. In particular, we shall show how this problem is related with an LQ–problem
for system having unbounded state, control and observation operators [1]. If the ob-
servability map: (Ψx0)(t) := Ce(·)Ax0 belongs to L(H,L2(0,∞; Y)), the input-output map
(Fu)(t) :=

∫ t
0 Ce

(t−τ)ABu(τ)dτ is in L(L2(0,∞; U),L2(0,∞; Y)) and there exists ε > 0 such that

the Popov spectral function is coercive, i.e., Π(jω) := R+2 Re
[
N∗Ĝ(jω)

]
+
[
Ĝ(jω)

]∗
QĜ(jω) ≥

εI a.e. on j , where(s):=C(sI-A)−1B, then the problem has a unique solution. The optimal
control uc ∈ L2(0,∞; U) can be realized in the linear feedback form

uc(t) = −R−1 [B∗H+N∗C]xc(t) , (3)

where H stands for the minimal cost operator, and H satisfies the operator Riccati equation

A∗H+HA+ C∗QC = (HB + C∗N)R−1(B∗H+N∗C) . (4)
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Optimal Control Problems for Systems Governed by Evolutionary
Inclusions of Second Order

List of authors:
J. F. Han 1
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In this talk, the optimal control problems for nonlinear second order evolutionary inclusions
are investigated. First, the existence of mild solutions (i.e. trajectory–selection pairs) to the
inclusion and the continuity properties of the solution set with respect to a parameter are es-
tablished. Then, for the control problem driven by the evolutionary inclusion, the existence
of optimal solutions is shown. Next, allowing the parameter to appear in all the data of the
control problem, including the nonlinear operator, the multifunction and the cost functional,
the variational stability of control problems is studied. The results on the asymptotic behav-
ior for optimal solutions, the convergence of minimal values, and the stability of reachable
sets are delivered. Finally, an example of nonlinear control problem for a hyperbolic problem
demonstrates the applicability of the results. More details can be found in [1]–[4].

References

[1] A. Kulig, S. Migorski, Solvability and Continuous Dependence Results for Second Order
Nonlinear Evolution Inclusions with a Volterra-type Operator, Nonlinear Analysis Theory,
Methods and Applications 75 (2012), 4729–4746.

[2] Z. H. Liu, J. F. Han, Boundary Value Problems for Second Order Impulsive Functional
Differential Equations, Dynamic Systems and Applications 20 (2011), 369–382.

[3] S. Migorski, Existence of Solutions to Nonlinear Second Order Evolution Inclusions without
and with Impulses, Dynamics of Continuous, Discrete and Impulsive Systems, Series B 18
(2011), 493–520.

[4] S. Migorski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities.
Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics, vol.
26, Springer, New York, 2013.

1 Faculty of Mathematics and Computer Science, Jagiellonian University, Institute of Computer Science, ul.
ÃLojasiewicza 6, 30348 Krakow, Poland

2 Faculty of Mathematics and Computer Science, Jagiellonian University, Institute of Computer Science, ul.
ÃLojasiewicza 6, 30348 Krakow, Poland. The research was supported by the Marie Curie International Research
Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme under Grant
Agreement No. 295118, the National Science Center of Poland under grant no. N N201 604640, the International
Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under grant no.
W111/7.PR/2012, the Ministry of Science and Higher Education of Republic of Poland and the Ministry of
Science and Technology of the People’s Republic of China under the project no. 35-7 within the Bilateral S&T
Cooperation Program between Poland and P. R. China for the years 2012–2013, and by the National Science
Center of Poland under Maestro Advanced Project no. DEC-2012/06/A/ST1/00262.

75



From Eckart & Young Approximation To Moreau Envelopes
And Vice Versa

List of authors:
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Hai Yen Le 2

In matricial analysis, the theorem of Eckart & Young provides a best approximation of an
arbitrary matrix by a matrix of rank at most r. In variational analysis or optimization, the
Moreau envelopes are appropriate ways of approximating or regularizing the rank function. We
prove here that we can go forwards and backwards between the two procedures, thereby showing
that they carry essentially the same information.

Keywords. Eckart & Young theorem, Moreau envelopes, rank minimization problems.

2010 Mathematics Subject Classification. 15A, 46N10, 65K10, 90C.

References

[1] U.Helmke and J.B.Moore, Optimization and Dynamical Systems, Spinger Verlag (1994).

[2] N.Higham, Matrix nearness problems and applications, In M.J.C Gover and S.Barnett,
editors, Applications of Matrix Theory, Oxford University Press (1989), 1-27.

[3] J.-B.Hiriart-Urruty and J.Malick, A fresh variational analysis look at the world of
the positive semidefinite matrices, J. of Optimization Theory and Applications, Vol 153(3)
(2012), 551–577 (Survey paper).

[4] J.-B.Hiriart-Urruty and H.Y.Le, A variational look at the rank function, to appear
in TOP (Journal of the Spanish Society of Statistics and Operations Research), July 2013
(Survey paper).

[5] J.-J.Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien.
(French) C. R. Acad. Sci. Paris 255 (1962) 2897–2899.

[6] J.-J.Moreau, Propriétés des applications“prox”. (French) C. R. Acad. Sci. Paris 256
(1963) 1069–1071.

1Institute of Mathematics
Paul Sabatier University, Toulouse (France)
jbhu@math.univ-toulouse.fr,http://www.math.univ-toulouse.fr/˜jbhu/

2Institute of Mathematics
Paul Sabatier University, Toulouse (France)
hyle@math.univ-toulouse.fr

76



[7] R.T.Rockafellar and R.J-B.Wets, Variational analysis, Springer (1998).

[8] G.W.Stewart, Matrix algorithms. Vol. I. Basic decompositions. Society for Industrial
and Applied Mathematics, Philadelphia, PA (1998).

77



Numerical Methods for Multi-Objective Optimal Control Problems
List of authors:

Yalcin Kaya 1

Helmut Maurer 2

We propose numerical methods for solving nonconvex multi–objective optimal control problems
with control and state constraints. We employ a scalarization technique which reduces the
problem to a single-objective optimal control problem. In contrast to a standard weighted-
sum scalarization [1], we use a weighted Tschebychev scalarization that is particularly suited
for nonconvex problems [2]. The weighted Tschebychev scalarization is surjective from the
space of weights to the Pareto set (front). Solutions (obtained via discretization) of a sequence
of scalarized problems yield an approximation of the Pareto front. The numerical method is
illustrated on two numerically challenging problems involving tumor anti-angiogenesis [4] and
a fedbatch bioreactor [5]. The control problems exhibit bang-bang and singular controls as well
as boundary controls for the state constraints.

References

[1] H. Bonnel and Y. C. Kaya, Optimization over th efficient set of convex multi-objective
optimal control problems. J. Optimization Theory and Applications 147, 93–112 (2010).

[2] Y. Kaya and H. Maurer, A numerical method for generating the Pareto front of nonconvex
multi-objective optimal control problems. submitted, 2013.

[3] J. Jahn, Vector Optimization: Theory, Applications, and Extensions, Springer, Berlin,
2010.

[4] U. Ledzewiz, H. Maurer and H. Schättler, Optimal and suboptimal protocols for a mathe-
matical model for tumor anti-angiogenesis in combination with chemotherapy. Mathemat-
ical Bioscieneces and Engineering 8, 307–323, 2011.

[5] F. Logist, B. Houska, M. Diehl and J. van Impe, Fast Pareto set generation for nonlinear
optimal control problems with multiple objectives, Struct. Multidisciplinary Optimization
42, 591–603, 2010.

1University of South Australia, School of Information Technology and Mathematical Sciences, Mawson Lakes,
Australia

2University of Muenster, Institute of Computational and Applied Mathematics, Münster, Germany

78



Error Bounds and Hölder Metric Subregularity
List of authors:

A. Kruger 1

Hölder metric subregularity/calmness of set-valued mappings can be treated in the framework
of the theory of error bounds of real-valued functions. For this purpose, the machinery of error
bounds needs to be extended to functions defined on the product of (metric or normed) spaces.

Suppose X and Y are metric spaces, (x̄, ȳ) ∈ X × Y , f : X × Y → R ∪ {+∞}, f(x̄, ȳ) = 0,

f(x, y) > 0 if y 6= ȳ, and lim inf
f(x,y)↓0

f(x, y)

d(y, ȳ)
> 0. Denote Sf := {x ∈ X| f(x, ȳ) ≤ 0}. We say that

f has a local error bound with respect to x at (x̄, ȳ) if there exists a τ > 0 such that

τd(x, Sf ) ≤ f+(x, y) for all x near x̄ and y ∈ Y,

or, in other words,

Er f(x̄, ȳ) := lim inf
x→x̄

f(x,y)>0

f(x, y)

d(x, Sf )
> 0.

If f(x, y) <∞ and ρ > 0, the nonlocal ρ-slope of f at (x, y) is defined as

|∇f |�ρ(x, y) := sup
(u,v)6=(x,y)

[f(x, y)− f+(u, v)]+
dρ((x, y), (u, v))

, (1)

where dρ((x, y), (u, v)) := max{d(x, u), ρd(y, v)}. Using (1), one can define the uniform strict
slope of f at (x̄, ȳ):

|∇f |�(x̄, ȳ) := lim
ρ↓0

inf
d(x,x̄)<ρ, f(x,y)<ρ
f(x,y)<d(x,Sf )1−ρ

|∇f |�ρ(x, y). (2)

Theorem 1 (i) Er f(x̄, ȳ) ≤ |∇f |�(x̄, ȳ);

(ii) if X and Y are complete and f+ is lower semicontinuous near (x̄, ȳ), then Er f(x̄, ȳ) =
|∇f |�(x̄, ȳ).

Let q ∈ (0, 1]. A multifunction F : X → 2Y between metric spaces is called Hölder metrically
subregular (of order q) at (x̄, ȳ) ∈ gphF if there exists a τ > 0 such that

τd(x, F−1(ȳ)) ≤ (d(ȳ, F (x)))q for all x near x̄,

1Centre for Informatics and Applied Optimization, School of Science, Information Technology and Engineering,
University of Ballarat, Australia
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or, in other words,

srq[F ](x̄, ȳ) := lim inf
x→x̄

x/∈F−1(ȳ)

(d(ȳ, F (x)))q

d(x, F−1(ȳ))
> 0.

This property can be treated as a special case of the local error bound property for the function
f : X × Y → R ∪ {+∞} defined by

f(x, y) =

{
(d(y, ȳ))q if (x, y) ∈ gphF,

+∞ otherwise,

as srq[F ](x̄, ȳ) = Er f(x̄, ȳ). Slopes (1) and (2) take the following form:

|∇F |�q,ρ(x, y) := sup
(u,v)6=(x,y)
(u,v)∈gphF

[(d(y, ȳ))q − (d(v, ȳ))q]+
dρ((u, v), (x, y))

(ρ > 0),

|∇F |�q(x̄, ȳ) := lim
ρ↓0

inf
d(x,x̄)<ρ, d(y,ȳ)<ρ

(d(y,ȳ))q<d(x,F−1(ȳ))1−ρ

(x,y)∈gphF

|∇F |�q,ρ(x, y). (3)

The above constants are called, respectively, the nonlocal (q, ρ)-slope of F at (x, y) ∈ gphF and
the uniform strict q-slope of F at (x̄, ȳ) ∈ gphF .

The next theorem is a consequence of Theorem 1.

Theorem 2 (i) srq[F ](x̄, ȳ) ≤ |∇F |�q(x̄, ȳ);

(ii) if X and Y are complete and gphF is locally closed near (x̄, ȳ), then srq[F ](x̄, ȳ) ≥
|∇F |�+q (x̄, ȳ).

Several kinds of local primal space and coderivative sufficient conditions of Hölder metric sub-
regularity can be deduced from Theorem 2 by providing lower estimates for the uniform strict
q-slope (3) in terms of appropriate local slopes.
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Maximising Sensitivity of Electrical Impedance of a Piezoelectic Ceramic
to Material Parameters using Modified Electrode Configuration

List of authors:
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J. Rautenberg 2 C. Unverzagt 3

Piezoceramics are often used in ultrasonic measurement devices (e.g. for flow, material concen-
tration or level measurement as well as for non-destructive testing). To increase the robustness
and functionality of the ultrasonic sensors, their development is often supported by computer
simulations. These finite element based simulations are highly sensitive to simulation parame-
ters, especially the material dataset of the modeled piezoceramic [?, ?]. However, these constants
are rarely well known as each produced charge of piezoceramics has its own parameters. These
parameters must be identified to reach optimal sensor design.

One cheap and non-intrusive method for parameter estimation is using the measurement of the
electrical impedance characteristics of the ceramic. In usual electrode topologies, however, the
impedance characteristics show little or no sensitivity to changes in certain critical parameters
[?]. By applying a non-uniform electric potential using ring shaped electrodes, an increase in
the sensitivity was observed and the corresponding results have been presented in [?].

In order to apply well known parameter estimation techniques, e.g. as discussed in [?] one
requires the sensitivity to be as high as possible. The optimisation problem is, in this case, to
maximize the sensitivity by adapting the electrode configuration, before the inverse problem can
be solved in the best setup. This optimisation problem has the sensitivity, which is a derivative
of the impedance, as its objective function and thus higher derivatives are required if one uses
the usual methods for nonlinear programming. Computation of higher derivatives is not always
economical and derivative free optimisation methods are of significant interest in such cases.
This talk will present the results for such an optimisation problem, where the sensitivity is
maximized in preparation for the solution of an inverse problem.

References

[1] M.Kaltenbacher: Simulationsbasierte Entwicklung von Sensoren. In: Technisches Messen
79, pp. 30-36, 2012.

[2] B.Henning, J.Rautenberg, C.Unverzagt, A.Schrder, S.Olfert: Computer-assisted design of
transducers for ultrasonic sensor systems. In: Meas. Sci. Technol., Vol. 20 (124012), Issue
12, 2009.

1University of Paderborn
2University of Paderborn
3University of Paderborn

81



[3] D.Kybartas, A.Lukosevicius: Determination of piezoceramics parameters by the use of
mode interaction and fitting of impedance characteristics. In: Ultragarsas 45 (4), pp. 2228,
2009.

[4] Carsten Unverzagt, Jens Rautenberg, Bernd Henning, and Kshitij Kulshreshtha. Modified
electrode shape for the improved determination of piezoelectric material parameters. In
Gan Woon Siong, Lim Siak Piang, and Khoo Boo Cheong, editors, Proceedings of the
2013 International Congress on Ultrasonics. 2013.

[5] B.Kaltenbacher, A.Neubauer, and O.Scherzer: Iterative Regularization Methods for Non-
linear Problems. de Gruyter, Berlin, New York, 2008.

82



Optimal Discrete-Time Finite-Dimensional Inertial Filters
List of authors:
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This talk will address optimal estimation of the expected value. This paper discusses the prob-
lem of estimation relating the expected value of a signal that is subject to stochastic noises.
An innovative solution in the proposed algorithm based a non-standard approach. In proposed
non-standard approach the mathematical model isn’t known and unknown is the distribution
of noise. This paper aims at devising a transparent and effective algorithm to estimate the
expected value based on discrete measurement data, i.e. an algorithm that is well established
mathematically and numerically for practical applications in standard SRT (SoftReal-Time)
computational systems. Stochastic noises constitute an inseparable element the process in au-
tomation systems. Noises determine proper operation of control systems and their accuracy. In
classic systems, noise filtration consists in application of observers or the Kalman filter [1][2].
The necessity to know a mathematical model of the dynamic system that is the source of the
degraded signal, and the necessity to solve complex differential and integral equations, make
such solutions disadvantageous. Other solutions to the filtration problems are based on knowing
parameters of distribution of discrete measurement samples [1]. In dynamic systems, a math-
ematical model of such a system is often not determined. Distribution of the sampled data is
arranged outside an undetermined curve. An application of classic filtration methods is difficult
to be implemented. By using the methods of linear regression, it is possible to devise estima-
tion algorithms for the expected value of a process signal that is subject to stochastic noises.
The selection of linear regression is justified by the necessity to identify signals that do not
belong to elementary functions as well as the criterion of feasibility in computer-based control
systems. In order to satisfy the mentioned requirements the algorithm should be characterised
by good mathematical and numerical conditions in the current computational systems [3]. In
order to carry out the task the method of the least squares (LS) has been applied. The final
solution was obtained by the recursive of narrow noise variance estimation of the distribution.
The advantage of LS is fast convergence of the algorithm comparable with the dynamics of
convergence of classical observers and solutions finite-dimensional. Acquisition of an optimal
parametric solution and fast convergence of the algorithm weigh in favour of the method of
least squares. The suggested algorithm can be applied to control, diagnostic, and predictive
systems. The algorithm does not necessitate determining a mathematical model of the dynamic
system compared with[2] and distribution parameters of measurement samples. Advantages of
the algorithm include transparency, effectiveness in standard computational systems, a slight
load of the estimator for degraded Gauss distributions, immunity to noises. Increased accuracy,
precision in control systems opens new horizons, reveals problems which has not been seen,
allows the application of algorithms which so far could not be used.
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On the robustification of optimum experimental design problems
List of authors:

M. S. Mommer 1

Optimum experimental design (OED) is the problem of finding setups for an experiment in
such a way that the collected data allows for optimally accurate estimation of the parameters
of interest - taking into account an experimental budget. In practice, the parameters are only
approximately known as a matter of course, while at the same time, solving an OED problem
is in a way equivalent to magnifying the dependence of the system response on these quantities.
As a consequence, designs computed on the bais of a ”good guess” of the parameters may
underperform dramatically in practice, especially for problems involving nonlinear models.

In this talk, we introduce new robust formulations for optimum experimental design that work
under significant uncertainty, and compare their performance with existing robustified OED
methods. Our focus is on problem settings in which the model is described by differential
equations of some type that are solved numerically. Our approach is based on a semi-infinite
programming formulation in which we exploit additional problem structure, together with sparse
grids, to ensure tractability. We also show how to construct a formulation of robust experimental
design that, in contrast to many OED formulation (even non-robust ones) requires no derivatives
in its formulation, and as a consequence can be used with existing simulation software that is
not able to compute sensitivities of order more than one.

The talk includes numerical experiments to illustrate and compare the effectiveness of the
approaches.
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Simultaneous Size, Shape and Topology Optimization in Parallel
Numerical Environment.
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There are many examples of using optimization techniques to design the structural elements,
but simultaneous size, shape and topology optimization is rather rare. In the resent years,
especially the topology optimization method has been introduced to the designing processes.
A good industrial example is here the structure of the Airbus A380 wing. The structural
elements of the wing were designed in two designing steps [1]. First, the optimal material
distribution was defined using the topology optimization. Then, after extraction of geometry
from the topology optimization results, the model for size and shape optimizations was derived.
Splitting the topology and then size and shape optimizations is necessary, due to completely
different optimization methods used in each case. In this talk the structural optimization
method in parallel numerical environment with some unique properties will be presented. The
optimization system is based on the discussion of design with optimal stiffness [2], which leads
to the conclusion, that for the stiffest design strain energy density (SED) along the shape to be
designed must be constant. To achieve postulated constant SED value on the structural surface
the biomimetic optimization system was designed. The numerical simulation system presented
in the talk is based on the algorithm of bone remodeling stimulated by mechanical loading [3].
Adaptation to mechanical stimulation, and thereby equalization of the SED on the structural
surface, results in altering the structural surface position in virtual space. This special kind
of structural optimization has some specific features that distinguish it from the widely used
methods such as SIMP. These features, which provide new possibilities in the area of structural
optimization, like:

- the domain independence,

- functional configurations during the process of optimization,

- possibility to solve the multiple load problems,

allow to comprise optimizations of size, shape, and topology with no need to define parameters.
The presented method is able to produce results similar to the standard method of topology
optimization and can be useful in mechanical design, especially when functional structures are
needed during the optimization process. Due to parallelisation of both the structural analysis
of strain energy density distribution and volume mesh generation, the presented method can
be useful in real industrial problems [4]. The SED computations are carried out in a parallel
environment, which is a condition to solve bigger problems and the same question concerns
mesh generation.

1Poznan University of Technology, Division of Virtual Engineering, ul. Piotrowo 3, 60-965 Poznan, Poland,
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The concept of Finite Element mesh parallel generation as well as Finite Element Analysis in
a parallel environment will be briefly presented - to illustrate the usefulness of the method for
real-world problems only.

This work was supported by the Polish National Science Centre under the grant - decision no.
DEC-2011/01/B/ST8/06925.
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On a Global Search in Operations Research Problems with a Bilinear
Structure

List of authors:

Andrei Orlov 1

As known development of new efficient methods for the solving of nonconvex problems is the
urgent problem of contemporary Operations Research. In this work we deal with the special class
of nonconvex problems — the problems with a bilinear structure. The class includes bimatrix
games and games with bilinear payoff functions, bilinear programming problems, problems of
bilinear separability, bilevel problems etc. (see, for example, [1, 2, 3, 4]). Note, with the help
of such problems the transportation and railway problems can be modeled.

For problems with the bilinear structure the new approach of global search is elaborated. The
approach is based on two principal features of bilinear functions: any bilinear function is affine in
each of its variables when the other variable is fixed; and it is represented as the difference of two
convex functions (so, a bilinear function is d.c. function). Also the approach takes into account
a possibility of equivalent representation of problems under scrutiny as nonconvex optimization
problems. These nonconvex problems are solved by using the Global Search Theory proposed
by A.S. Strekalovskiy [5]. Global Search Theory in problems with bilinear structure consists of
two basic stages: 1) a special local search methods (LSM), which takes into account the first
feature of bilinear functions; 2) the procedures, based on Global Optimality Conditions in d.c.
optimization problems, which allow to improve the point provided by LSM.

So, in contrast to the widely distributed approaches to nonconvex problems such as branch &
bound methods, cuts methods, outside and inside approximations methods, vertex enumera-
tion, simulated annealing methods, genetic algorithms, ant colony algorithms and so on, our
approach allow to use contemporary convex optimization methods within Local and Global
Search Procedures. Also with the help of our approach we can solve nonconvex optimization
problems of high dimension (up to hundreds variables) [1, 2, 3, 4].

Therefore the approach allows building efficient methods for finding global solutions in prob-
lems with bilinear structure. Computational testing of the elaborated methods has shown the
efficiency of the approach. This work is carried out under financial support of RFBR (projects
no. 13-01-92201 Mong a, 12-07-33045-mol a ved, 12-07-13116-ofi m RZD).
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Infinite Horizon Optimal Control Problems with Budget Constraints
List of authors:

Sabine Pickenhain 1

Valeriya Lykina 2

We consider a class of infinite horizon optimal control problems in Lagrange form involving the
Lebesgue integral in the objective and isoperimeric constraints.

This special class of problems arises in the theory of economic growth and in processes where
the time T is an exponentially distributed random variable.

The problem is formulated as optimization problem in Hilbert Spaces. It reads as follows:
Minimize the functional

J(x, u) =

∞∫
0

r(t, x(t), u(t))ν(t)dt

subject to all pairs (x, u) ∈W 1,n
2 (R+, ν)× Lr

2(R+, ν), satisfying
state equations

ẋ(t) = A(t)x(t) +B(t)u(t) , x(0) = x0,

control restrictions

u(t) ∈ U, U ∈ Comp (Rr) \ { ∅ },

and an isomperimetric constraint

∞∫
0

cT (t)x(t)ν(t)dt = D.

The remarkable on this statement is the choice of Weighted Sobolev- and Weighted Lebesgue
spaces as state and control spaces respectively. The function ν is a density function. These
considerations give us the possibility to extend the admissible set and simultaneously to be sure
that the adjoint variable belongs to a Hilbert space.

For the class of problems proposed, we prove a Pontryagin type Maximum Principle and give
applications.
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Identification, Modeling and Optimization of Active Magnetic Levitation
Electromagnet
List of authors:

Adam Pi lat 1

This work presents the investigation of a cylindrical electromagnet designed for the Active
Magnetic Levitation System. The aim of the experimental stage is to obtain the magnetic flux
density close to the electromagnet core and the electromagnet coil current. The experimental
investigation in the open automatic control chain was supported by the Programmable Analog
Controller (PAC) [1]. It is well known that the hysteresis can be cancelled by a current feedback.
One can find such a solution implemented in the hardware layer of PAC [2]. The Active Magnetic
Levitation electromagnet was modeled with the support of the Finite Element Method. Due to
the cylindrical construction of the electromagnet the model was built in the axis symmetry mode
to simplify calculations. Therefore, the manufactured electromagnet cross-section was reflected
in the model geometry. Additionally, the electrical circuit representing the voltage driven
electromagnet coil was modeled. The calculated coil current was used to drive the electromagnet
and to expand the levitation model [3]. The presence of hysteresis effect was considered. The
magnetic field problem together with the coil excitation by the voltage control signal was solved
in the time domain. On the basis of the designed model, the optimization problem devoted to
the electromagnetic force maximization under geometry and control constraints was formulated.
Finally, the possibility of controller synthesis on the basis of such a model was analyzed.
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New Methods for Solving Nonconvex Optimal Control Problems
List of authors:

Alexander Strekalovskiy 1

As known, the most of real-life optimization problems turn out to be both nonconvex and
dynamic, what provides a huge of difficulties and singularities in studying and moreover in a
numeric search for a global solution to the problems.

We consider optimal control (OC) problems with quadratic functionals defined by matrices
which are indefinite, otherwise the problems with integral and terminal (d.c.) functionals, rep-
resentable as a difference of two convex functionals (Bolza problems). For this class of optimal
control problems we propose, first, special local search methods, consisting in consecutive solving
the linearized (w.r.t. the basic nonconvexities at a current iteration) problems, and a study of
its convergence [6]. Second, for the OC problems under scrutiny Global Optimality Conditions
(GOC) developed, from which in particular the Pontryagin maximum principle follows [4, 5, 9].
On the base of these GOC a family of Global Search Methods (GSM) have been developed and
its convergence was investigated [7, 8].

Besides a family of Local Search methods special for each kind of nonconvexity was proposed
and substantiated, and after that incorporated into Global Search Procedures [3].

Further the number of special nonconvex OC test problems has been generated by the procedure
the idea of which belong to L.N.Vicente and P.H.Calamai [1, 2].

On this large field of benchmarks problems some of that are of rather high dimension (20 in
state and 20 in control) it was conducted a large number of computational experiments which
witnessed on the attractive abilities and the promising effectiveness of the developed approach.
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High order optimality conditions for p-regular inequality constrained
optimization problem

List of authors:
E. Szczepanik 1

A. Prusińska 2

A. Tret‘yakov 3

Consider the following optimization problem

minϕ(x) (1)

subject to
gi(x) ≤ 0, i = 1, ..., m, (2)

where x ∈ Rn, ϕ : Rn → R, ϕ ∈ C2(Rn), gi : Rn → R and gi ∈ Cp+1(Rn), p ∈ N.

Let x∗ be the solution of (1)–(2) and X = {x ∈ Rn|gi(x) ≤ 0, i = 1, . . . , m}.
Assume that the active constraints gi(x∗) that forming the index set

I(x∗) = {i ∈ {1, . . . , m} | gi(x∗) = 0} 4
= {1, . . . , l}, l ≤ m, are irregular (nonregular, singular,

degenerate) at x∗, i.e. {g′i(x∗)}i∈I(x∗) are linearly dependent.

Let g = (g1, . . . , gr1 , gr1+1, . . . , gr2 , . . . , grp−1+1, . . . , grp)T , rp = l, and

g′i(x
∗) = 0, i = r1 + 1, . . . , l,

g′′i(x∗) = 0, i = r2 + 1, . . . , l,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g
(p−1)
i (x∗) = 0, i = rp−1 + 1, . . . , rp = l.

(3)

The operators of higher derivatives
{

g
(k)
i (x∗)

}
i=rk−1+1,...,rk

are linearly independent, k = 1, . . . , p,

r0
4
= 0. The constraints can be written in the form (3) by applying linear transformations of

g(x).

We give a description of the critical cone for the problem (1)–(2) and the outer boundary of this
cone. Moreover, we formulate Karash-Kuhn-Tucker type optimality conditions with the help of
the p-factor operator, which is the main construction of the p-regularity theory.
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Penalty Aided Transitions to Optimal Control Structures in the MSE
List of authors:

Maciej Szymkat 1

Adam Korytowski 2

The method of Monotone Structural Evolution (MSE) belongs to a wide class of gradient com-
putational methods of optimal control, known as direct sequential. It has several distinctive

features. The number and, possibly, type of optimization variables are changed during the op-
timization in a systematic way. Periods of gradient optimization in a constant decision space
are interrupted by structural changes, which alter the optimization space without affecting the
current approximation of optimal control. The performance index monotonically decreases, and
the stationary points of the algorithm have to satisfy the necessary optimality conditions of the
maximum principle. Special rules prevent the algorithm from convergence to chattering modes.
With some preparatory work provided (which consists in defining a sufficiently rich stock of
MP-consistent control procedures), the MSE gives a good chance to reveal an optimal control
structure in an automatic way. For more information, see [1, 2, 3].

However, using the whole apparatus of the MSE from the very start is not always advantageous.
As long as the current solution is far from optimal, it is usually more convenient to confine the
stock of control procedures to approximative ones and freeze the optimization space (the control
structure). This reduces the MSE to the well known direct sequential methods. The full power
of the MSE should be switched on at the right moment. The criteria for choosing such a moment
are one of the subjects of this work.

It may happen, especially if the switching moment is chosen too late, that the gradient forces
become too weak for the MP-consistent control procedures to expand and to replace the ap-
proximative ones in order to create the optimal control structure. On the other hand, if this
is done too early, the current estimates of optimal adjoints may be insufficiently accurate for
a proper initialization of parameters of some MP-consistent procedures. A tool that can be
helpful in such a situation was proposed in [3], where it was called the transition method.

This work will be devoted to a systematic study of this problem. New transition methods will be
described based on a penalty approach, with flat (as in [3]) and spike generations of appropriate
consistent procedures. The penalty will be ascribed to those control arcs which are represented
by control procedures which certainly do not appear in an optimal control structure. As a
result, a method is obtained which transforms a typical numerical approximation of optimal
control into a representation with explicit optimal control structure.
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Stability, Controllability and Optimization of a Model of Treatment
Response to Combined Anticancer Therapies.

List of authors:

A.Świerniak, 1

J. Klamka 2

In the paper, we consider a second-order finite-dimensional semilinear stationary dynamical
system described by a set of two ordinary differential state equations. More precisely, we discuss
the control properties of a model belonging to a class proposed by Hahnfeldt et al. in [1] to which
one control variable in the case of antiangiogenic therapy or two control variables describing
two treatment modalities (antiangiogenic and chemo- therapies) have been introduced. The
Hahnfeldt et al. model [1] is based on the assumption that tumor growth with an incorporated
vascularization mechanism can be described by a Gompertz-type or logistic-type equation with
variable carrying capacity which defines the dynamics of the vascular network. The main idea
of this class of models is to incorporate the spatial aspects of the diffusion of factors that
stimulate and inhibit angiogenesis into a non-spatial two-compartmental model for cancer cells
and vascular endothelial cells. More precisely we study a model which is a modification of
original Hahnfeldt et al model proposed in [2] . In the case of stability we follow the line of
reasoning proposed in [2] . First we find a non-trivial equillibrium for control free system and
prove its local stability using linearization analysis. Then an energy type Lyapunov function
is used to prove global stability of the system. The next steps include asymptotic analysis of
the model behavior in the case of constant and periodic treatments administered in the infinite
control intervals.

The practical question which arises in this case is how these results could be applied in the case
of realistic finite treatment horizons. All the considerations related to finite time treatment
are conditioned on the concept of controllability of the dynamical systems discussed which, to
our knowledge, has not been analyzed by other authors except in our previous paper [4]. We
prove that the model with two controls is locally constrained controllable. The results are based
on theorems proved in [3]. The idea of the theorems is that under suitable assumptions the
constrained global controllability of a linear associated approximated dynamical system implies
constrained local relative controllability near the origin of the original semilinear second-order
dynamical system.

Using Potryagin maximum principle we find treatment protocols which satisfy necessary con-
ditions of optimality. The control strategy is found to be a bang-bang one that means that
only switchings between full dose and non dose administrations are optimal. Singular arcs are
found to be non optimal using generalized Clebsch-Legendre and Goh conditions. Our result is
in this case different than the one obtained by Ledzewicz and Schattler [5] who proved that for
the original Hahnfeldt model optimal trajectory should contain singular arcs. The theoretical
results are illustrated by simulation experiments for biologically justified sets of parameters.
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Pontryagins Maximum Principle for Infinite Horizon Optimal Control
Problems with a nonlinear dynamical system

List of authors:

N. Tauchnitz 1

In this talk we present the Pontryagins Maximum Principle for the infinite horizon optimal
control problem

J
(
x(·), u(·)

)
= (L-)

∫ ∞
0

f
(
t, x(t), u(t)

)
dt→ inf

subject to the state equation

ẋ(t) = ϕ
(
t, x(t), u(t)

)
, x(0) = x0,

and control restrictions
u(t) ∈ U ⊆ Rm, U 6= ∅.

The integral in the functional J denotes the Lebesgue integral.

We consider ϕ
(
t, x(t), u(t)

)
=
√
x(t) − x(t), x(0) = 2, and remark that the solution x(t) =[

1 + (
√

2 − 1)e−
1
2
t
]2

doesn’t belong to the space W 1,2(R+,R). Therefore we investigate the

optimal control problem on the Weighted Sobolev space W 1,2
ν (R+,Rn),

W 1,2
ν (R+,Rn) := {x(·) | x(·) : R+ → Rn measurable,∫ ∞

0

(
‖x(t)‖2 + ‖ẋ(t)‖

)
ν(t) dt <∞}, ν(t) = e−at (a > 0),

as the state space.

The result is the statement of Pontryagins maximum principle in the normal form with an
adjoint variable which belongs to the Weighted space W 1,2

ν−1(R+,Rn).
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Nonparametric Instrumental Regression with Non-Convex Constraints
List of authors:
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This paper considers the nonparametric regression model with an additive error that is de-
pendent on the explanatory variables. As is common in empirical studies in epidemiology and
economics, it also supposes that valid instrumental variables are observed. A classical ex-
ample in microeconomics considers the consumer demand function as a function of the price
of goods and the income, both variables often considered as endogenous. In this framework,
the economic theory also imposes shape restrictions on the demand function, like integrability
conditions. Motivated by this illustration in microeconomics, we study an estimator of a non-
parametric constrained regression function using instrumental variables by means of Tikhonov
regularization. We derive rates of convergence for the regularized model both in a determin-
istic and stochastic setting under the assumption that the true regression function satisfies a
projected source condition including, because of the non-convexity of the imposed constraints,
an additional smallness condition.
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H2-norm Model Reduction for Time-Variant Systems and its
Application to PDE Constrained Optimization

List of authors:

G. Vossen 1

Model reduction with respect to the H2-norm (or, for unstable systems, H2,α-norm) provides
a strong computational benefit for the simulation of linear time-invariant (LTI) dynamical sys-
tems [1, 2]. In particular, optimization problems for LTI systems can be solved very efficiently
by using this technique. A typical example is given by PDE constrained optimization or optimal
control problems [3] obtained by spatial semi-discretization using methods such as finite differ-
ences, finite elements or discontinous Galerkin. However, H2-norm model reduction is designed
for time-invariant systems.

In this talk, extensions to linear time-variant (LTV) systems will be discussed. The method is
based on the idea of multiply applying model reduction on certain LTI subsystems providing
a reduced LTV system. The number of LTI subsystems and hence, the quality of the model
reduction is controlled not directly but indirectly by an a posteriori error estimator for optimal
control problems [4]. This estimator limits the error provided by solving an optimal control
problem subject to a large-scale LTV system on basis of the corresponding reduced system.
Therefore, the reduced system is indirectly guaranteed to be a suitable approximation for the
large-scale system. The method will be illustrated by industrial applications arising in the
simulation of laser welding with a moving laser source.
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An Inexact Trust-region Algorithm for Nonlinear Programming Problems
with Dense Constraint Jacobians
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There is a wide range of applications where the derivative matrices of the corresponding mini-
mization problems are of rather small size but dense. Examples for such a setting are Periodic
Adsorption Processes (PAPs). Here, the purity of the product or the energy consumption serve
as target function. Additionally, the state of the system is described by general nonlinear equal-
ity constraints. As a consequence, when using well-established techniques the run-time needed
for the optimization of such systems may be dominated significantly by the computation of the
dense Jacobian and its factorization.

This talk presents an alternative approach, namely an inexact trust-region SQP algorithm. The
proposed method does not require the exact evaluation of the constraint Jacobian or an iterative
solution of a linear system with a system matrix that involves the constraint Jacobian. Instead,
only an approximation of the constraint Jacobian is required. Furthermore, it is assumed that
an exact representation of the nullspace of the constraint Jacobian at the current iterate can be
evaluated in a fixed finite number of steps if necessary. Corresponding accuracy requirements
for the presented first-order global convergence result can be verified easily during the optimiza-
tion process to adjust the approximation quality of the constraint Jacobian and its nullspace
representation. A global convergence proof as well as first numerical results will be presented.
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Variational inequality problem, denoted by VIP(F, C), is one of the fundamental problems in
optimization theory. In a real Hilbert space it is defined as a problem of finding such ū ∈ C
which satisfies inequality 〈Fū, z − ū〉 ≥ 0, with respect to all z ∈ C, where F : H → H is
given monotone operator. Very often the subset C has a special structure. This subset is
often the intersection of simpler to handle closed convex subsets or a sublevel set of a convex
function or, more generally, a set of fixed points of a quasi-nonexpansive operator. In this
talk we will consider an abstract variational inequality in a real Hilbert space, which covers
all of these three cases. For this purpose we will introduce a class of approximately shrinking
(AS) operators (compare with [1, Definition 16], quasi-nonexpansive operator U : H → H, with
FixU 6= ∅, is AS if ‖Uxk − xk‖ →k 0 implies that d(xk,FixU)→k 0, for any bounded sequence
(xk) ⊆ H). Moreover we discuss their basic properties. Finally, we will present a few examples
of iterative methods with application of AS operators, which can be used to solve VIP(F,C).
Iterative schemes which are going to be presented are mostly based on the hybrid steepest
descent method introduced by I. Yamada in [3] and extended by A. Cegielski and R. Zalas in
[1, 2]. These iterative schemes are related to cyclic, sequential and also to string averaging
procedures of construction of operators, which are more general.
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